
Fundamental Algorithms, Assignment 10
Solutions

1. Suppose we are given the Minimal Spanning Tree T of a graph G.
Now we take an edge {x, y} of G which is not in T and reduce its
weight w(x, y) to a new value w. Suppose the path from x to y in
the Minimal Spanning Tree contains an edge whose weight is bigger
than w. Prove that the old Minimal Spanning Tree is no longer the
Minimal Spanning Tree.
Solution:We can replace the edge whose weight is bigger than w with
the edge {x, y} resulting in a lower weight spanning tree.

2. Suppose we ran Kruskal’s algorithm on a graph G with n vertices and
m edges, no two costs equal. Suppose the the n − 1 edges of minimal
cost form a tree T .

(a) Argue that T will be the minimal cost tree.
Solution:From Kruskal’s Algorithm we will accept all the edges
of T . Then we have a spanning tree so no more edges are ac-
cepted.

(b) How much time will Kruskal’s Algorithm take. Assume that the
edges are given to you an array in increasing order of weight.
Further, assume the Algorithm stops when it finds the MST. Note
that the total number m of edges is irrelevant as the algorithm
will only look at the first n − 1 of them.
Solution:We do n operations UNION [x, y], each takes time
O(ln n) so the total time is O(n ln n).

(c) We define Dumb Kruskal. It is Kruskal without the SIZE func-
tion. For UNION [u, v] we follow u, v down to their roots x, y as
with regular Kruskal but now, if x 6= y, we simply reset π[y] = x.
We have the same assumptions on G as above. How long could
Dumb Kruskal take. Describe an example where it takes that
long. (You can imagine that when the edge u, v is given an ad-
versary puts them in the worst possible order to slow down your
algorithm.)
Solution:As UNION [x, y] must take time O(n) (as there are
only n vertices) the whole algorithm will take time O(n2). This
can happen. Suppose the edges were, in order, {2, 1},{3, 1},{4, 1},
. . ., {n, 1}. For the first edge we make π[1] = 2. The second edge
we follow 1 down to root 2 and set π[2] = 3. Now for the third



edge we follow 1 to 2 to root 3 and set π[3] = 4. On the i-th step
we are taking time ∼ i so it is a Θ(n2) running time. tem

(d) Consider Kruskal’s Algorithm for MST on a graph with vertex
set {1, . . . , n}. Assume that the order of the weights of the edges
begins {1, 2}, {2, 3}, {3, 4}, . . . , {n − 1, n}. Assume that when in
Kruskal’s Algorithm we have a tie SIZE[x] = SIZE[y] we set
the smaller of x, y to be the parent of the largest.

i. Show the pattern as the edges are processed. In particular,
let n = 100 and stop the program when the edge {1, 73} has
been processed. Give the values of SIZE[x] and π[x] for all
vertices x.
Solution:First we set π[2] = 1 and SIZE[1] = 2. Now
for i = 3, 4, . . . when we process 1, i we have π[i] = i and
π[i − 1] = 1. (In a formal mathematical sense this would
be by induction, but its OK just to see the pattern.) So
the WHILE loop sends i − 1 to ! with SIZE[1] = i − 1
and i to itself with SIZE[i] = 1 so we set π[i] = 1 and reset
SIZE[1] = i−1+1 = i. (That is, the SIZE[1] goes up by one
for each iteration.) With n = 100 after {1, 73} is processed
we have π[i] = 1 for all 1 ≤ i ≤ 73 and SIZE[1] = 73 and
SIZE[i] = 1 for 2 ≤ i ≤ 73. For the yet untouched i from 74
to 100 we still have the initial values SIZE[i] = 1, π[i] = i.

ii. Now let n be large and stop the program after {1, n} has
been processed. Assume the ordering of the weights of the
edges was given to you, so it took zero time. How long, as an
asymptotic function of n, would this program take. (Reasons,
please!)
Solution:It would be linear Θ(n) time. At each iteration
the WHILE loop is applied zero times for 1 and one time for
i so it takes constant time – and we have to run the program
through the n − 1 edges. Remark: This is quite special – in
most cases the WHILE loops get long.


