
TEXT ALIGNMENT

Many modern text processors, such as LATEX(which this is written on) use a
sophisticated dynamic programming algorithm to assure that the lines are
well aligned on the right side of the page. The problem is where to break
the text into lines. Let us l1, l2, . . . , ln denote the lengths of the words of
the text. If li, . . . , lj are placed on a line we assume they take up space
li + . . . + lj + j − i, the extra being the space between the words. (In the
special case of a single word li the length is simply li.) Let L denote the
total length of the line. (We’ll assume: all li ≤ L, we can never have more
than space L on a line, and that words can never be cut.) A line with text
li, . . . , lj then has a gap G = L− (li + . . . + lj + j − i) at the end of the line.
We’d like, of course, for G to be zero but we can’t always 1 get this. We
are given a function P (x) and a line with gap G incurs a penalty of P (G).
For the sake of argument we will specify P (x) = x3. We’ll say a line with
gap G has badness P (G) = G3. 2 The total badness of a text is the sum of
the badnesses of the lines. The object is to split the text into lines so as to
minimize the total badnesses.

A natural inclination is to use a greedy algorithm: if it fits, put it in.
Below is an example (the | represents the end of the line) where this does
not work. The words have lengths 3, 4, 1, 6 and the line length L = 10. The
greedy algorithm would have 3, 4, 1 on the first line and 6 on the second
with gaps 0, 4 respectively so total badness 03 + 43 = 64. If instead we split
3, 4 and 1, 6 the gaps are 2, 2 and the total badness is 23 + 23 = 16, much
better3

NOW SING |2 8 NOW SING A|0 0

A MELODY |2 8 MELODY |4 64

total badness 16 64

1You might notice that the text you are reading (and most things written in LATEXor
other modern word processors) seems to be nearly perfectly aligned. But if you look very
closely you’ll see that the space between letters is not perfectly uniform. When LATEXhas,
say, 3 extra spaces at the end of a line it spreads the space out along the whole line
by putting extra space between letters. Exactly how it does that is itself an interesting
question, but one we do not persue.

2So badnesses go 0, 1, 8, 27, 64, 125, . . .. A gap of five (badness 125) is then counted as
equivalent to nearly five gaps of three so the algorithm will really try to avoid them. The
choice of badness function is a subjective decision guided by aesthetic considerations. The
algorithm is given a particular badness function and a text to split into sentences.

3In actual application space on the last line is not so bad as space in the middle but
we ignore that wrinkle in our presentation.



Now for the algorithm. Set m(i) equal to the total badness of the text
l1, . . . , li. We shall find m(i) for i = 1, 2, . . . , n in increasing order.

Initialization. Suppose i is such that l1, . . . , li fit on one line, i.e.,
such that l1+. . .+li+i−1 ≤ L. The best splitting of the text is then to have
everything on the same line. This gives a gap G = L− (l1 + . . . + li + i− 1)
and so m(i) = P (G).

The recursion. Now look at larger i. We take the i one by one, going
up. We loop on i going up to n. For a given i let k range over i, i−1, i−2, . . .
for as long as lk, . . . , li can fit on one line. For each of those k calculate
m(k−1) plus the badness of the line lk, . . . , li. This gives the badness of the
text l1, . . . , li if the last line is lk, . . . , li. Pick the k that gives the smallest
sum and set m(i) equal to that sum. We can also keep an auxilliary array
s setting s(i) = k. This has the meaning that in the optimal splitting of
text l1, . . . , li the last line starts with lk. At the end m(n) denotes the total
badness of of the full text. To actually do the splitting we work backwards.
The last line goes from word s(n) to word n. Now set n → s(n)− 1 and the
penultimate line goes from word s(n) to word n, etc.

How long does this take. There is a loop on i of length n. There is
an inner loop on k. Certainly k takes on at most n values so that this
is a O(n2) algorithm. But in many cases we can say more. Suppose u is
the maximum number of words that can fit on a line. Then k takes on at
most u values so that this is a O(un) algorithm. If we think of the line size
as fixed (rather a natural assumption) and the words as having a minimal
length (also natural) then u is a fixed number and so this becomes a linear

algorithm in the size of the text.


