## Fundamental Algorithms, Assignment 4

Due Feb 16/17 in Recitation

The computer is useless. It can only answer questions. - Pablo Picasso

When asked for the asymptotics answer in a form $\Theta\left(n^{a}\right)$ or $\Theta\left(\lg ^{b} n\right)$ or $\Theta\left(n^{a} \lg ^{b} n\right)$ for some reals $a, b$.

1. Consider the recursion $T(n)=9 T(n / 3)+n^{2}$ with initial value $T(1)=$ 1. Calculate the precise values of $T(3), T(9), T(27), T(81), T(243)$. Make a good (and correct) guess as to the general formula for $T\left(3^{i}\right)$ and write this as $T(n)$. (Don't worry about when $n$ is not a power of three.) Now use the Master Theorem to give, in Thetaland, the asymptotics of $T(n)$. Check that the two answers are consistent.
2. Use the Master Theorem to give, in Thetaland, the asymptotics of these recursions:
(a) $T(n)=6 T(n / 2)+n \sqrt{n}$
(b) $T(n)=4 T(n / 2)+n^{5}$
(c) $T(n)=4 T(n / 2)+7 n^{2}+2 n+1$
3. Toom-3 is an algorithm similar to the Karatsuba algorithm discussed in class. (Don't worry how Toom-3 really works, we just want an analysis given the information below.) It multiplies two $n$ digit numbers by making five recursive calls to multiplication of two $n / 3$ digit numbers plus thirty additions and subtractions. Each of the additions and subtractions take time $O(n)$. Give the recursion for the time $T(n)$ for Toom-3 and use the Master Theorem to find the asymptotics of $T(n)$. Compare with the time $\Theta\left(n^{\log _{2} 3}\right)$ of Karatsuba. Which is faster when $n$ is large?
4. Write the following sums in the form $\Theta(g(n))$ with $g(n)$ one of the standard functions. In each case give reasonable (they needn't be optimal) positive $c_{1}, c_{2}$ so that the sum is between $c_{1} g(n)$ and $c_{2} g(n)$ for $n$ large.
(a) $n^{2}+(n+1)^{2}+\ldots+(2 n)^{2}$
(b) $\lg ^{2}(1)+\lg ^{2}(2)+\ldots+\lg ^{2}(n)$
(c) $1^{3}+\ldots+n^{3}$.
5. Give an algorithm for subtracting two $n$-digit decimal numbers. The numbers will be inputted as $A[0 \cdots N]$ and $B[0 \cdots N]$ and the output should be $C[0 \cdots N]$. (Assume that the result will be nonnegative.) How long does your algorithm take, expressing your answer in one of the standard $\Theta(g(n))$ forms.

The mind is not a vessel to be filled but a fire to be kindled.

- Plutarch

