Fundamental Algorithms, Assignment 4

Due Feb 16/17 in Recitation

The computer is useless. It can only answer questions. – Pablo Picasso

When asked for the asymptotics answer in a form $\Theta(n^a)$ or $\Theta(\lg^b n)$ or $\Theta(n^a \lg^b n)$ for some reals a, b.

- 1. Consider the recursion $T(n) = 9T(n/3) + n^2$ with initial value T(1) =1. Calculate the *precise* values of T(3), T(9), T(27), T(81), T(243). Make a good (and correct) guess as to the general formula for $T(3^i)$ and write this as T(n). (Don't worry about when n is not a power of three.) Now use the Master Theorem to give, in Thetaland, the asymptotics of T(n). Check that the two answers are consistent.
- 2. Use the Master Theorem to give, in Thetaland, the asymptotics of these recursions:
 - (a) $T(n) = 6T(n/2) + n\sqrt{n}$
 - (b) $T(n) = 4T(n/2) + n^5$
 - (c) $T(n) = 4T(n/2) + 7n^2 + 2n + 1$
- 3. Toom-3 is an algorithm similar to the Karatsuba algorithm discussed in class. (Don't worry how Toom-3 really works, we just want an analysis given the information below.) It multiplies two n digit numbers by making five recursive calls to multiplication of two n/3 digit numbers plus thirty additions and subtractions. Each of the additions and subtractions take time O(n). Give the recursion for the time T(n) for Toom-3 and use the Master Theorem to find the asymptotics of T(n). Compare with the time $\Theta(n^{\log_2 3})$ of Karatsuba. Which is faster when n is large?
- 4. Write the following sums in the form $\Theta(g(n))$ with g(n) one of the standard functions. In each case give reasonable (they needn't be optimal) positive c_1, c_2 so that the sum is between $c_1g(n)$ and $c_2g(n)$ for n large.
 - (a) $n^2 + (n+1)^2 + \ldots + (2n)^2$
 - (b) $\lg^2(1) + \lg^2(2) + \ldots + \lg^2(n)$
 - (c) $1^3 + \ldots + n^3$.

5. Give an algorithm for subtracting two *n*-digit decimal numbers. The numbers will be inputted as $A[0 \cdots N]$ and $B[0 \cdots N]$ and the output should be $C[0 \cdots N]$. (Assume that the result will be nonnegative.) How long does your algorithm take, expressing your answer in one of the standard $\Theta(g(n))$ forms.

The mind is not a vessel to be filled but a fire to be kindled. – Plutarch