Fundamental Algorithms, Assignment 11

Due April 27/8 in Recitation.
My work has always tried to unite the true with the beautiful and when I had to choose one or the other I usually chose the beautiful. - Hermann Weyl

1. Consider Dumb Prim for MST. The high level idea is the same but to find the minimal weight of an edge $\{v, w\}, v \in S, w \notin S$, one looks at all the weights and finds the minimum in the usual way. (There is no updating in Dumb Prim.) Assume that all pairs $\{v, w\}$ have a weight. Let n be the number of vertices.
(a) When $|S|=i$ what is the time to add a vertex to S as a function of n and i.
(b) What is the total time for Dumb Prim as a sum over i.
(c) Evaluate the above sum as $\Theta(g(n))$ for some nice function $g(n)$. (Caution: The time is not an increasing function of i. For example, when $i=n-1$ the time is quite quick.)
(d) Compare the time for Dumb Prim with Prim as discussed in class
2. Consider Prim's Algorithm for MST on the complete graph with vertex set $\{1, \ldots, n\}$. Assume that edge $\{i, j\}$ has weight $(j-i)^{2}$. Let the root vertex $r=1$. Show the pattern as Prim's Algorithm is applied. In particular, Let $n=100$ and consider the situation when the tree created has 73 elements and π and key have been updated.
(a) What are these 73 elements.
(b) What are $\pi[84]$ and $k e y[84]$.
3. Find $d=\operatorname{gcd}(89,55)$ and x, y with $89 x+55 y=1$. [Remark: This is part of a pattern with two consecutive numbers from the Fibonacci sequence $0,1,1,2,3,5,8,13,21,34,55,89, \ldots]$
4. Find $\frac{211}{507}$ in Z_{1000}.
5. Solve the system
$x \equiv 34 \bmod 101$
$x \equiv 59 \bmod 103$.
6. Using the Island-Hopping Method to find 2^{1000} modulo 1001 using a Calculator but NOT using multiple precision arithmetic. (You should never have an intermediate value more than a million.)
7. (extra from last week!) Suppose that during Kruskal's Algorithm (for MST) and some point we have $S I Z E[v]=37$. What is the interpretation of that in the case when $\pi[v]=v$? What is the interpretation of that in the case when $\pi[v]=u \neq v$? Let w be a vertex. How many different values can $\pi[w]$ have during the course of Kruskal's algorithm? How many different values (as a function of V, the number of vertices) can SIZE[w] have during the course of Kruskal's algorithm? (That is, the maximal number possible.)

The universe is not only queerer than we suppose but queerer than we can suppose.

- J.B.S. Haldane

