Fundamental Algorithms, Assignment 10

Due April 20/21, in Recitation

The world is teeming; anything can happer
John Cage, Silence

1. Suppose we are given the Minimal Spanning Tree T of a graph G. Now we take an edge $\{x, y\}$ of G which is not in T and reduce its weight $w(x, y)$ to a new value w. Suppose the path from x to y in the Minimal Spanning Tree contains an edge whose weight is bigger than w. Prove that the old Minimal Spanning Tree is no longer the Minimal Spanning Tree.
2. Suppose we ran Kruskal's algorithm on a graph G with n vertices and m edges, no two costs equal. Assume that the $n-1$ edges of minimal cost form a tree T.
(a) Argue that T will be the minimal cost tree.
(b) How much time will Kruskal's Algorithm take. Assume that the edges are given to you an array in increasing order of weight. Further, assume the Algorithm stops when it finds the MST. Note that the total number m of edges is irrelevant as the algorithm will only look at the first $n-1$ of them.
(c) We define Dumb Kruskal. It is Kruskal without the SIZE function. For $U N I O N[u, v]$ we follow u, v down to their roots x, y as with regular Kruskal but now, if $x \neq y$, we simply reset $\pi[y]=x$. We have the same assumptions on G as above. How long could dumb Kruskal take. Describe an example where it takes that long. (You can imagine that when the edge u, v is given an adversary puts them in the worst possible order to slow down your algorithm.)
3. Consider Kruskal's Algorithm for MST on a graph with vertex set $\{1, \ldots, n\}$. Assume that the order of the weights of the edges begins $\{1,2\},\{2,3\},\{3,4\}, \ldots,\{n-1, n\}$. (Note: When $S I Z E[x]=S I Z E[y]$ make the first value the parent of the second. In particular, set $\pi[2]=$ 1 , not the other way around.)
(a) Show the pattern as the edges are processed. In particular, let $n=100$ and stop the program when the edge $\{72,73\}$ has been processed. Give the values of $S I Z E[x]$ and $\pi[x]$ for all vertices x.
(b) Now let n be large and stop the program after $\{n-1, n\}$ has been processed. Assume the ordering of the weights of the edges was given to you, so it took zero time. How long, as an asymptotic function of n, would this program take. (Reasons, please!)
4. DO NOT SUBMIT Consider Prim's Algorithm for MST on the complete graph with vertex set $\{1, \ldots, n\}$. Assume that edge $\{i, j\}$ has weight $(j-i)^{2}$. Let the root vertex $r=1$. Show the pattern as Prim's Algorithm is applied. In particular, Let $n=100$ and consider the situation when the tree created has 73 elements and π and key have been updated.
(a) What are these 73 elements.
(b) What are $\pi[84]$ and key[84].

Humans are allergic to change. They love to say, "We've always done it this way." I try to fight that.
Grace Hopper

