
Game Analysis and Project

This is extra material, connected with Depth First Search in Chapter
22. An optional project is described after the material.

1 The Game

We consider a two person game, call the Players Paul and Carole. There is
a set of positions V . For each v ∈ V , MOV E[v] is either Paul or Carole
and tells you whose turn it is. There is a designated starting position s. We
have a directed graph G on V . For each v ∈ V there is an adjacency list
Adj[v] of those positions w that can be reached in one move. We assume
that V is finite and that G has no cycles, that is, a DAG. We call v an end
position if Adj[v] is empty, that is, a leaf in the DAG. For each end position
v there is a value V ALUE[v].

Here is the game. Start at s. Players move (remember that MOV E[v]
is part of the data so you know who must move) until reaching a leaf v. The
game is then over and Carole pays Paul V ALUE[v] dollars.

Naturally, Paul wants to maximize his payoff and Carole wants to min-
imize it. But if the game has a million positions how can they analyze
it.

DFS provides the key. We apply DFS − V ISIT [G, s]. (Any position
not reachable from s is clearly irrelevant to the analysis. So lets assume
that all of V is reachable from s and that G has V vertices and E edges.
Now E ≥ V − 1 as every position except s came from somewhere. So the
time Θ(V + E) for DFS is actually Θ(E).) Everytime a vertex v becomes
Black we define V ALUE[v]. For the final positions v, V ALUE[v] is given in
the data. So assume v is not a final position. Note, critically, that when v

becomes black all w ∈ Adj[v] have already become blace so that, recursively,
their V ALUE[w] have already been determined. There are two cases:
MOV E[v] is Paul. Paul wants to make the move that will maximize his
value. So set

V ALUE[v] = max
w∈Adj[v]

V ALUE[w]

MOV E[v] is Carole. Carole wants to make the move that will maximize his
value. So set

V ALUE[v] = min
w∈Adj[v]

V ALUE[w]

For the extra time, beyond DFS itself, observe that for each v we examine
the w ∈ Adj[v] and so that is a total of E pairs v,w so the additional time



is Θ(E). This is the same order of time as DFS itself. So the game can be
analyzed in time Θ(E). This works pretty nicely for Tic Tac Toe.

2 The Optional Project

Special Rules: You may work in a group with at most 3 students and
you may (unlike the assignments) hand in a single report for all of you. The
report will not get a grade. A bad report cannot hurt your final grade, a
good report can help. No specific percentages are given to the effect of the
report on your grade. But please note that this is not considered a major
project and you should limit the amount of time you devote to it.

This optional project is due on May 1. Electronic submission directly to
Prof. Spencer is prefered, but hard copy submission is also acceptible.

The project is to implement this algorithm for a variety of games and to
analyze the date. It will be fine if you analyze one of the two games below.

Nim: There are piles of matches of different sizes and the state is given by the
size of each pile and whose move it is. The classic example is the start state
being (3, 5, 7) meaning there are piles of size 3, 5, 7 and it is Paul’s move. At
each round the player takes any amount of matches (at least one) from any
one of the piles. For example, from (3, 5, 7) there is an arc to (1, 5, 7) and
it is now Carole’s move. When there are no matches left the player whose
turn it is loses. We make the values +1 for a Paul win and −1 for a Carole
win. There are two leaves.(0, 0, 0) has value −1 when it is Paul’s move and
value +1 when it is Carole’s move. Applying the algorithm will give the
value of the start state, meaning who will win with perfect play. Run it for
several initial states. Nim has a mathematical solution so, if you know it,
check against that solution.
Sequence: There are n moves, alternating between Paul (first) and Carole.
At each move the player selects a bit, zero or one. The starting node, denoted
e, is the empty string. After u moves the intermediate node will be a binary
string of length u. At the end of the game, the leaves are the 2n strings of
length n. The values V ALUE(x) for the leaves x are set in advance. The
algorithm should then compute V ALUE(e), the value of the game to Paul.

Analyze, through simulation, what happens when the 2n values V ALUE(x)
are chosen as random real numbers in the interval [−1,+1]. What is V ALUE(e)??
Of course, it will depend on the random numbers. For each n do some num-
ber of simulations and get data on the different V ALUE(s). (The number
of nodes is 2n+1 − 1 so that even for n = 20 the algorithm should be pretty
quick.)



Now – put on your Data Scientist hat! Display this data in some mean-
ingful way and come up with a reasoned conjecture (from the data) about
what V ALUE(s) will usually be as a function of n. Your instructor does
not know what will happen! Here are some things to think about.

1. Is there an advantage to playing last? If so the parity of n would affect
the data.

2. Is there an advantage to playing first? By putting values for leaves
random in [−1,+1] if there was no advantage the value would be zero.

3. Is there much variance in the results. (Take some n and do many
runs.)

4. Is there a distribution to the results? (Again, take some n and do
many runs.)

5. What does the limiting behavior as n → ∞ appear to be?

6. Surprise your instructor! Come up with some other analysis.

Most of all, have fun – explore – take to heart the words of the founder
of Theoretical Computer Science, Don Knuth:

...pleasure has probably been the main goal all along. But I
hesitate to admit it, because computer scientists want to man-
tain their image as hard-working individuals who deserve high
salaries. Sooner or later society will realise that certain kinds of
hard work are in fact admirable even though they are more fun
than just about anything else.


