Time for Euclidean Algorithm

Suppose a, b have n digits and we apply $\operatorname{EUCLID}(a, b)$. How long does it take. We know there are $O(n)$ iterations but each iteration, being a division (that is, finding $a \bmod b$ for some a, b) might take $O\left(n^{2}\right)$ so it looks like $O\left(n^{3}\right)$. But, actually, it is $O\left(n^{2}\right)$.

To see why lets write a, b in binary, for example, $a=111000010101$ and $b=100010101$. We start the division

```
    1
100010101|111000010101
    100010101
    10101101
```

How long does this step take? Well, there is a subtraction which takes $O(n)$ steps. (In any intermediate stage the numbers have at most n digits.) There is placing the 1 above, but that can go in one of two places. If you try one place and it fails (because the subtraction yields a negative number) it took just time $O(n)$ to see the failure. So this whole step takes time $O(n)$.

We continue the division to the end:

111
$100010101 \mid 111000010101$
100010101

1010110111
100010101

100011011
100010101

100
In this case we were pretty lucky and got a very small $r=100$. But the key observation is: Every digit we put up in the quotient knocks at least one digit off of the a value. Let us define size as the number of digits of a
plus the number of digits of b, where by a, b we here mean the current pair of numbers where we are applying the division. If we get an s-digit quotient it takes time $O(s n)$ but the new remainder has s fewer (maybe even better!) digits than a and so the cost (because on the next iteration we deal with $b, r)$ has gone down by s. Say a, b are initially n-digit numbers so the cost is $2 n$. At the end the cost can't be negative so it has gone down by at most $2 n$. It is costing time $O(n)$ (the subtraction) for each reduction in the size by one. Thus the total time is $O\left(n^{2}\right)$.

Here is a slightly different approach, slightly modifying the Algorithm, with the same answer. The input is a with s digits and b with t digits with $s \geq t$. We define a subtraction step by setting

$$
a^{\prime}=a-2^{t-s} b
$$

This takes $O(n)$ steps. (The multiplying by 2^{t-s} simply moves the array for b over $t-s$ places, its not a true multiplication in terms of time.) Now, as argued before with $a=b q+r$, we have

$$
\operatorname{gcd}(a, b)=\operatorname{gcd}\left(a^{\prime} b\right)
$$

With (the example above) we have $a=111000010101$ and $b=100010101$.

a	111000010101
$2 \wedge 4 b$	100101010000
a,	010011000101

It may be that $a^{\prime}<0$. If that happens replace it by $\left|a^{\prime}\right|$.
Now a^{\prime} has (at least) one less digit before so that the size (the number of digits in a plus the number of digits in b) has gone down by (at least) one. We check which of a^{\prime}, b now has more digits and reverse them if necessary. If $a^{\prime}=0$ we end and return b as the gcd.

As the initial size was at most $2 n$ (by assumption), we do at most $2 n$ subtraction steps, each takes time $O(n)$ so the total time is $O\left(n^{2}\right)$.

