
Time for Euclidean Algorithm

Suppose a, b have n digits and we apply EUCLID(a, b). How long does
it take. We know there are O(n) iterations but each iteration, being a
division (that is, finding a mod b for some a, b) might take O(n2) so it looks
like O(n3). But, actually, it is O(n2).

To see why lets write a, b in binary, for example, a = 111000010101 and
b = 100010101. We start the division

1

------------

100010101|111000010101

100010101

---------

10101101

How long does this step take? Well, there is a subtraction which takes
O(n) steps. (In any intermediate stage the numbers have at most n digits.)
There is placing the 1 above, but that can go in one of two places. If you try
one place and it fails (because the subtraction yields a negative number) it
took just time O(n) to see the failure. So this whole step takes time O(n).

We continue the division to the end:

111

------------

100010101|111000010101

100010101

---------

1010110111

100010101

----------

100011011

100010101

---------

100

In this case we were pretty lucky and got a very small r = 100. But the
key observation is: Every digit we put up in the quotient knocks at least
one digit off of the a value. Let us define size as the number of digits of a



plus the number of digits of b, where by a, b we here mean the current pair
of numbers where we are applying the division. If we get an s-digit quotient
it takes time O(sn) but the new remainder has s fewer (maybe even better!)
digits than a and so the cost (because on the next iteration we deal with
b, r) has gone down by s. Say a, b are initially n-digit numbers so the cost
is 2n. At the end the cost can’t be negative so it has gone down by at most
2n. It is costing time O(n) (the subtraction) for each reduction in the size

by one. Thus the total time is O(n2).
Here is a slightly different approach, slightly modifying the Algorithm,

with the same answer. The input is a with s digits and b with t digits with
s ≥ t. We define a subtraction step by setting

a′ = a − 2t−sb

This takes O(n) steps. (The multiplying by 2t−s simply moves the array for
b over t − s places, its not a true multiplication in terms of time.) Now, as
argued before with a = bq + r, we have

gcd(a, b) = gcd(a′b)

With (the example above) we have a = 111000010101 and b = 100010101.

a 111000010101

2^4b 100101010000

a’ 010011000101

It may be that a′ < 0. If that happens replace it by |a′|.
Now a′ has (at least) one less digit before so that the size (the number of

digits in a plus the number of digits in b) has gone down by (at least) one.
We check which of a′, b now has more digits and reverse them if necessary.
If a′ = 0 we end and return b as the gcd.

As the initial size was at most 2n (by assumption), we do at most 2n
subtraction steps, each takes time O(n) so the total time is O(n2).


