
Dijkstra’s Algorithm

We are given a directed graph G in adjacency list format, together with
a weight function w[x, y] > 0 defined for all edges (x, y) of G. We are given
a designated souce vertex s.

We shall create a function d[v] which (in the end) will be the minimal
weight path from s to v. We shall create a parent function π[v]. Applying
(in the end) π repeatedly to any vertex v will eventually reach the source.
The minimal path from s to v will then be found by going in the opposite
direction. (That is, if repeatedly applying π we go v = v0, v1 = π[v0],
v2 = π[v1], etc., until vr = π[vr−1] = s then the path is s = vr to vr−1 to
vr−2, etc. until reaching v0 = v. We shall have a set S of processed vertices.
This can be stored as a Boolean array. Initially S = {s} and at each “step”
we add a new vertex u to S. We shall have (critically!) a MIN-HEAP Q

consisting of those “reached points” v with v 6∈ S, the HEAP using the
function d.
Initialization: Set d[s] = 0. Set d[v] = ∞ for all v 6= s. Set S = {s}.
Let Q = ∅. For v 6= s set π[v] = NIL.
Step One: (Not in text but convenient.)
FOR ALL v ∈ ADJ [s]

d[v] = w[s, v]
π[v] = s

ADD v to Q

END FOR
Caution: Adding v to Q or changing a d[v] will take time O(ln V ) as

we must retain the MIN-HEAP structure!
Now here is the main step. We write it as a WHILE loop. When all

vertices are reachable from s by some path the loop will occur precisely V −1
times. The algorithm works even when some v are not reachable, they will
still have their original values d[v] =∞, π[v] = NIL.
Dijkstra:

WHILE Q 6= ∅
u← EXTRACT −MIN [Q]
ADD u to S

FOR v ∈ Adj[u] with v 6∈ S

RELAX[u,v]
END FOR

The key now is RELAX which updates the values of d[v], π[v]. It is
convenient to do it in two parts (IF, ELSEIF) depending on whether or not
v has already been reached. Note that if neither of the conditions for IF or



ELSEIF are met then there is no updating.
RELAX[u,v]
IF π[v] = NIL THEN DO

pi[v] = u

d[v] = d[u] + w[u, v]
ADD v to Q

END DO
ELSE IF d[u] + w[u, v] < d[v] (*can improve*) THEN DO

pi[v] = u

d[v] = d[u] + w[u, v]
RESET Q

END DO
The algorithm can perhaps best be understood by its interpreteation just

before the u ← EXTRACT −MIN [Q] step. At that moment for all the
processed vertices w ∈ S the value of d[w] is the correct final value and the
value of π[w] is correct – that is, the minimal path from s to w is found by
starting at w, applying π until reaching s and then reversing. For w 6∈ S we
may think of d[w], π[w] as provisional values. d[w] represents the shortest
total weight of a path that stays inside S (the processed vertices) until the
last edge when it goes to w, and π[w] represents the penultimate vertex
(just before w) on that path. When there is no such path we still have the
original d[w] =∞, π[w] = NIL.

Here is the key mathematical point: Take that u 6∈ S with minimal d[u].
Then that d[u] is the correct final value (that is, smallest weight path over
all) and π[u] is correct. Why? Well, take any path from s to u. At some
point it would have to go from S to some point u′ not in S. Suppose u′ 6= u.
Then already the path from s to u′ has weight d[u′]. But this is at least d[u]
(thats why we picked u with d[u] minimal!) and we still have to get from u′

to u so the total weight of the path would be bigger than d[u].


