## Dijkstra's Algorithm

We are given a directed graph $G$ in adjacency list format, together with a weight function $w[x, y]>0$ defined for all edges $(x, y)$ of $G$. We are given a designated souce vertex $s$.

We shall create a function $d[v]$ which (in the end) will be the minimal weight path from $s$ to $v$. We shall create a parent function $\pi[v]$. Applying (in the end) $\pi$ repeatedly to any vertex $v$ will eventually reach the source. The minimal path from $s$ to $v$ will then be found by going in the opposite direction. (That is, if repeatedly applying $\pi$ we go $v=v_{0}, v_{1}=\pi\left[v_{0}\right]$, $v_{2}=\pi\left[v_{1}\right]$, etc., until $v_{r}=\pi\left[v_{r-1}\right]=s$ then the path is $s=v_{r}$ to $v_{r-1}$ to $v_{r-2}$, etc. until reaching $v_{0}=v$. We shall have a set $S$ of processed vertices. This can be stored as a Boolean array. Initially $S=\{s\}$ and at each "step" we add a new vertex $u$ to $S$. We shall have (critically!) a MIN-HEAP $Q$ consisting of those "reached points" $v$ with $v \notin S$, the HEAP using the function $d$.
Initialization: Set $d[s]=0$. Set $d[v]=\infty$ for all $v \neq s$. Set $S=\{s\}$. Let $Q=\emptyset$. For $v \neq s$ set $\pi[v]=N I L$.
Step One: (Not in text but convenient.)
FOR ALL $v \in A D J[s]$
$d[v]=w[s, v]$
$\pi[v]=s$
ADD $v$ to $Q$
END FOR
Caution: Adding $v$ to $Q$ or changing a $d[v]$ will take time $O(\ln V)$ as we must retain the MIN-HEAP structure!

Now here is the main step. We write it as a WHILE loop. When all vertices are reachable from $s$ by some path the loop will occur precisely $V-1$ times. The algorithm works even when some $v$ are not reachable, they will still have their original values $d[v]=\infty, \pi[v]=N I L$.
Dijkstra:
WHILE $Q \neq \emptyset$
$u \leftarrow E X T R A C T-M I N[Q]$
ADD $u$ to $S$
FOR $v \in \operatorname{Adj}[u]$ with $v \notin S$
RELAX[ $\mathrm{u}, \mathrm{v}$ ]
END FOR
The key now is RELAX which updates the values of $d[v], \pi[v]$. It is convenient to do it in two parts (IF, ELSEIF) depending on whether or not $v$ has already been reached. Note that if neither of the conditions for IF or

ELSEIF are met then there is no updating.
RELAX[u,v]
IF $\pi[v]=$ NIL THEN DO
$p i[v]=u$
$d[v]=d[u]+w[u, v]$
ADD $v$ to $Q$
END DO
ELSE IF $d[u]+w[u, v]<d[v]$ (*can improve*) THEN DO
$p i[v]=u$
$d[v]=d[u]+w[u, v]$
RESET $Q$
END DO
The algorithm can perhaps best be understood by its interpreteation just before the $u \leftarrow E X T R A C T-M I N[Q]$ step. At that moment for all the processed vertices $w \in S$ the value of $d[w]$ is the correct final value and the value of $\pi[w]$ is correct - that is, the minimal path from $s$ to $w$ is found by starting at $w$, applying $\pi$ until reaching $s$ and then reversing. For $w \notin S$ we may think of $d[w], \pi[w]$ as provisional values. $d[w]$ represents the shortest total weight of a path that stays inside $S$ (the processed vertices) until the last edge when it goes to $w$, and $\pi[w]$ represents the penultimate vertex (just before $w$ ) on that path. When there is no such path we still have the original $d[w]=\infty, \pi[w]=N I L$.

Here is the key mathematical point: Take that $u \notin S$ with minimal $d[u]$. Then that $d[u]$ is the correct final value (that is, smallest weight path over all) and $\pi[u]$ is correct. Why? Well, take any path from $s$ to $u$. At some point it would have to go from $S$ to some point $u^{\prime}$ not in $S$. Suppose $u^{\prime} \neq u$. Then already the path from $s$ to $u^{\prime}$ has weight $d\left[u^{\prime}\right]$. But this is at least $d[u]$ (thats why we picked $u$ with $d[u]$ minimal!) and we still have to get from $u^{\prime}$ to $u$ so the total weight of the path would be bigger than $d[u]$.

