Dijkstra's Algorithm

We are given a directed graph G in adjacency list format, together with a weight function w[x, y] > 0 defined for all edges (x, y) of G. We are given a designated souce vertex s.

We shall create a function d[v] which (in the end) will be the minimal weight path from s to v. We shall create a parent function $\pi[v]$. Applying (in the end) π repeatedly to any vertex v will eventually reach the source. The minimal path from s to v will then be found by going in the opposite direction. (That is, if repeatedly applying π we go $v = v_0$, $v_1 = \pi[v_0]$, $v_2 = \pi[v_1]$, etc., until $v_r = \pi[v_{r-1}] = s$ then the path is $s = v_r$ to v_{r-1} to v_{r-2} , etc. until reaching $v_0 = v$. We shall have a set S of processed vertices. This can be stored as a Boolean array. Initially $S = \{s\}$ and at each "step" we add a new vertex u to S. We shall have (critically!) a MIN-HEAP Qconsisting of those "reached points" v with $v \notin S$, the HEAP using the function d.

Initialization: Set d[s] = 0. Set $d[v] = \infty$ for all $v \neq s$. Set $S = \{s\}$. Let $Q = \emptyset$. For $v \neq s$ set $\pi[v] = NIL$.

Step One: (Not in text but convenient.)

FOR ALL $v \in ADJ[s]$

d[v] = w[s, v]

 $\pi[v] = s$

ADD v to Q

END FOR

Caution: Adding v to Q or changing a d[v] will take time $O(\ln V)$ as we must retain the MIN-HEAP structure!

Now here is the main step. We write it as a WHILE loop. When all vertices are reachable from s by some path the loop will occur precisely V-1 times. The algorithm works even when some v are not reachable, they will still have their original values $d[v] = \infty$, $\pi[v] = NIL$.

Dijkstra:

WHILE $Q \neq \emptyset$ $u \leftarrow EXTRACT - MIN[Q]$ ADD u to SFOR $v \in Adj[u]$ with $v \notin S$ RELAX[u,v]

END FOR

The key now is RELAX which *updates* the values of $d[v], \pi[v]$. It is convenient to do it in two parts (IF, ELSEIF) depending on whether or not v has already been reached. Note that if neither of the conditions for IF or ELSEIF are met then there is no updating. RELAX[u,v] IF $\pi[v] = NIL$ THEN DO pi[v] = u d[v] = d[u] + w[u, v]ADD v to QEND DO ELSE IF d[u] + w[u, v] < d[v] (*can improve*) THEN DO pi[v] = u d[v] = d[u] + w[u, v]RESET QEND DO

The algorithm can perhaps best be understood by its interpreteation just before the $u \leftarrow EXTRACT - MIN[Q]$ step. At that moment for all the processed vertices $w \in S$ the value of d[w] is the correct final value and the value of $\pi[w]$ is correct – that is, the minimal path from s to w is found by starting at w, applying π until reaching s and then reversing. For $w \notin S$ we may think of $d[w], \pi[w]$ as provisional values. d[w] represents the shortest total weight of a path that stays inside S (the processed vertices) until the last edge when it goes to w, and $\pi[w]$ represents the penultimate vertex (just before w) on that path. When there is no such path we still have the original $d[w] = \infty, \pi[w] = NIL$.

Here is the key mathematical point: Take that $u \notin S$ with minimal d[u]. Then that d[u] is the correct final value (that is, smallest weight path over all) and $\pi[u]$ is correct. Why? Well, take any path from s to u. At some point it would have to go from S to some point u' not in S. Suppose $u' \neq u$. Then already the path from s to u' has weight d[u']. But this is at least d[u](thats why we picked u with d[u] minimal!) and we still have to get from u' to u so the total weight of the path would be bigger than d[u].