Basic Algorithms, Assignment 9
Solutions

1. Let a(z) = ¥, ajz’ be a polynomial of degree less than n. Find

a(0) as a simple expression of a(1),a(¢),a(e?),...,a(e*) where € =
e/ = cos(2m/n) 4 isin(27/n). (Idea: Inverse DFT)
Solution:As a(0) = ag, the constant term, we apply the inverse DFT
to a(1),a(e),a(e?),...,a(e* ') - this is the case where we have n equa-
tions in n unknowns and adding them all up gives n times the zero-th
unknown so we get the nice formula

-3 50

3|1—‘

That is, the value at 0 is the average on the n values surrounding
it. FYI: This is a fundamental result when studying functions of a
complex variable. As n — oo the average (often!) approaches an
integral and a(0) (often!) gets well approximated by its Taylor Series
to n terms so we get (caution: not always!!)

1 2 276
a(0) = %/0 a(e“™)do

2. Consider the undirected graph with vertices 1,2, 3,4,5 and adjacency
lists (arrows omitted) 1 : 25, 2 : 1534, 3 : 24, 4 : 253, 5 : 412. Show
the d and 7 values that result from running BF'S, using 3 as a source.
Nice picture, please!

Solution:

BFS: 3,2,4,1,

d[3] =0, w[3] = nil
d2] =1, 7[2] =3
dj4] =1, n[4] = 3
1] =2, 7[1] = 2
df5] = 2, 7[5] = 2

3. Show the d and 7 values that result from running BFS on the undi-
rected graph of Figure A, using vertex u as the source.
Solution:

dlU] =0, n[U] = nil
dT)=1,7[T]=U
dX] =1, 7[X]=U

dY]=1,#[Y]=U
dWl=2,7[W]=T
dlS] =3, n[S]=W
dR] =4, n[R] =S
dV]=5,n[V]=R

. We are given a set V of wrestlers. Between any two pairs of wrestlers
there may or may not be a rivalry. Assume the rivalries form a graph
G which is given by an adjacency list representation, that is, Adj[v] is
a list of the rivals of v. Let n be the number of wrestlers (or nodes) and
r the number of rivalries (or edges). Give a O(n + r) time algorithm
that determines whether it is possible to designate some of wrestles
as GOOD and the others as BAD such that each rivalry is between a
GOOD wrestler and a BAD wrestler. If it is possible to perform such a
designation your algorithm should produce it.

Here is the approach: Create a new field TYPE[v] with the values GOOD
and BAD. Assume that the wrestlers are in a list L so that you can pro-
gram: For all v € L. The idea will be to apply BFS[v] — when you hit
a new vertex its value will be determined. A cautionary note: BFS [v]
might not hit all the vertices so, just like we had DFS and DFS-VISIT
you should have an overall BFS-MASTER (that will run through the list
L) and, when appropriate, call BFS[v].

Note: The cognescenti will recognize that we are determining if a
graph is bipartite!

Solution:The idea here is to call the first wrestler GOOD. When some-
one is adjacent to someone GOOD they are called BAD and if they are
adjacent to someone BAD they are called GOOD. But if in the adjacency
list you come upon someone who has already been labelled (that is,
not white) then you must check if there is a contradiction. A further
problem: BFS[v] will only explore the connected component of v, if
that is labelled with no contradiction then you must go on to the other
vertices. So we start with everything white. The “outside” program
is:

For all v e L

If COLOR[v] = WHITE (*else skip*) then BFSPLUS [v].

BFSPLUS [v] starts by setting TYPE[v] = GOOD. Then it runs BFS [v]
with two additions. When u € Adjlw] and u is white you define
TYPE[u] to be the opposite of TYPE[w|. When wu is not white you check
if TYPE[w] = TYPE[u]. If not, ignore. But if so exit the entire program

with NO DESIGNATION POSSIBLE printout.

. Show how DFS works on Figure B. All lists are alphabetical, except
that we put R before Q so it is the first letter. Show the discovery and
finishing time for each vertex.

Solution:

Discovery order : RUYQSVWTXZ

Finishing order : WV SZXTQYUR

Stack : push(R) push(U) push(Y) push(Q) push(S) push(V') push(W)
pop(W) pop(V') pop(5S) push(T') push(X) push(Z) pop(Z)

pop(X) pop(T') pop(Q) pop(Y') pop(U) pop(R)

. Show the ordering of the vertices produced by TOP-SORT when it is
run on Figure C, with all lists alphabetical.

Solution: We apply DFS to the graph. The first letter is M so we
apply DFS-VISIT (M)

v s[v] {[v]
M 1 20
Q 2 5
T 3 4
R 6 19
U 7 8
Y 9 18
v 10 17
W 11 14
Z 12 13
X 15 16

Note, for example, that though X is in Adj[M] it doesn’t affect DFS.
At time 19 R finishes and returns control to M. M looks at X in
its adjacency list but it is no longer white and so ignores it. At this
stage all vertices are black except N, O, P, S which as white. In this
particular example N is the letter right after M but in the general
case DFS would skip over those vertices which weren’t white. Indeed,
right after DFS-VISIT all vertices are white or black. So next we do
DFS-VISIT(N). Note that the time does not restart! Note also that
the now black vertices, such as U € Adj(N) and R € Adj(O), do not
play a role

v oslv] f]v]

N 21 26
O 22 25
S 23 24

Finally we do DFS-VISIT(P). This one is quick. The adjacency list of
P consists only of .S which is already black. So

The sort is the list of vertices in the reverse order of their finish. In
the algorithm when a vertex finishes we place it at the start of a linked
list, initially nil. At the end, with negligible extra time, we have the
list:

PNOSMRYVXWZUQT

. Let S(n) satisfy initial condition S(1) = 4 and recursion S(n) =
S(n/7) + 11 Assume n is a power of 7. Give a precise formula for
S(n).

Solution:We get from S(1) to S(n) in log; n steps — where a step is
going from S(x) to S(7z). Each time we add 11 so we added a total
of 11log; n. We started with S(1) =4. So S(n) =4+ 11log; n.

. Not to be Submitted! If one person is purple on December 10, 2020
and the number of purple people doubles every five days, at what day
does the number of purple people reach 7 - 10°?

Solution:Ten doublings makes a thousand, twenty a million, thirty a
billion so 33 doublings reaches 7-10%. That is 165 days. So 31 + 31 +
28 + 31 + 30 = 151 days for five months, until May 10, 2021 and then
another 14 days, a purple world on May 24, 2020.

