Basic Algorithms, Assignment 7 Solutions

1. Determine an LCS of 10010101 and 010110110.

Solution: We create an eight by eight array giving $C[m, n]$, the length of the LCS between the first m of the first sequence and the first n of the second sequence.
Here is array. The sequences are placed on top and on the left for convenience. The numbering starts at 0 so that the row zero and column zero are all zeroes.

-	-	0	1	0	1	1	0	1	1	0
-	0	0	0	0	0	0	0	0	0	0
1	0	0	1	1	1	1	1	1	1	1
0	0	1	1	2	2	2	2	2	2	2
0	0	1	1	2	2	2	3	3	3	3
1	0	1	2	2	3	3	3	4	4	4
0	0	1	2	3	3	3	4	4	4	5
1	0	1	2	3	4	4	4	5	5	5
0	0	1	2	3	4	4	5	5	5	6
1	0	1	2	3	4	5	5	6	6	6

So the length is 6 . Start at the bottom right and walk until hitting the edge. At (i, j) go diagonal left if $C[i, j]=C[i-1, j-1]+1$; if not go left or up, whichever is $C[i, j]$. (We'll go left if they both are.) This gives

-	-	0	1	0	1	1	0	1	1	0
-	0	0	0	0	0	0	0	0	0	0
1	0	0	1	1	1	1	1	1	1	1
0	$\mathbf{0}$	1	1	2	2	2	2	2	2	2
0	0	$\mathbf{1}$	1	2	2	2	3	3	3	3
1	0	0	$\mathbf{2}$	2	3	3	3	4	4	4
0	0	1	2	$\mathbf{3}$	$\mathbf{3}$	3	4	4	4	5
1	0	1	2	3	4	$\mathbf{4}$	4	5	5	5
0	0	1	2	3	4	4	$\mathbf{5}$	$\mathbf{5}$	5	6
1	0	1	2	3	4	5	5	6	$\mathbf{6}$	$\mathbf{6}$

The places where you go diagonally left are the same in both sequences and these give the common sequence 010101. Note that there is no uniqueness to the sequences themselves.

-	-	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	1	$\mathbf{1}$	$\mathbf{0}$	1	$\mathbf{1}$	0
-	0	0	0	0	0	0	0	0	0	0
1	0	0	1	1	1	1	1	1	1	1
0	$\mathbf{0}$	1	1	2	2	2	2	2	2	2
$\mathbf{0}$	0	$\mathbf{1}$	1	2	2	2	3	3	3	3
$\mathbf{1}$	0	0	$\mathbf{2}$	2	3	3	3	4	4	4
$\mathbf{0}$	0	1	2	$\mathbf{3}$	$\mathbf{3}$	3	4	4	4	5
$\mathbf{1}$	0	1	2	3	4	$\mathbf{4}$	4	5	5	5
$\mathbf{0}$	0	1	2	3	4	4	$\mathbf{5}$	$\mathbf{5}$	5	6
$\mathbf{1}$	0	1	2	3	4	5	5	6	$\mathbf{6}$	$\mathbf{6}$

2. Write all the parenthesizations of $A B C D E$. Associate them in a natural way with (setting $n=5$) the terms $P(i) P(5-i), i=1,2,3,4$ given in the recursion for $P(n)$.
Solution: Splitting $1-4$ gives $P(1) P(4)=5$ parenthesizations:
$A(B(C(D E))), A(B((C D) E)), A((B C)(D E)), A((B(C D)) E), A(((B C) D) E)$
Splitting 4-1 gives $P(4) P(1)=5$ parenthesizations:
$(A(B(C D))) E,(A((B C) D)) E,((A B)(C D)) E,(((A B) C) D) E,((A(B C)) D) E$
Splitting 2-3 gives $P(2) P(3)=2$ parenthesizations:

$$
(A B)((C D) E),(A B)(C(D E))
$$

Splitting 3-2 gives $P(3) P(2)=2$ parenthesizations:

$$
((A B) C)(D E),(A(B C))(D E)
$$

3. Let x_{1}, \ldots, x_{m} be a sequence of distinct real numbers. For $1 \leq i \leq m$ let $I N C[i]$ denote the length of the longest increasing subsequence ending with x_{i}. Let $D E C[i]$ denote the length of the longest decreasing subsequence ending with x_{i}.
(a) Find an efficient method for finding the values $I N C[i], 1 \leq i \leq n$. (You should find $I N C[i]$ based on the previously found $I N C[j]$, $1 \leq j<i$. Your algorithm should take time $O\left(n^{2}\right)$.)
Solution: The longest increasing subsequence ending in x_{i} is either simply x_{i} or it is obtained by appending x_{i} to some subsequence ending in x_{j} where $j<i$. One can do that if and only if $x_{j}<x_{i}$. So we should take $I N C[i]$ to be 1 (x_{i} itself) plus the
maximum of the $I N C[j], j<i$, for which $x_{j}<x_{i}$. However, if there are no such j (for example, when $i=1$) the default value should be 1 . Each $I N C[i]$ then takes a single loop which is time $O(n)$ and so the total time is $O\left(n^{2}\right)$. (Of course, $D E C[i]$ can be found similarly.)
(b) Let LIS denote the length of the longest increasing subsequence of x_{1}, \ldots, x_{m}. Show how to find $L I S$ from the values $I N C[i]$. Similarly, let DIS denote the length of the longest decreasing subsequence of x_{1}, \ldots, x_{m}. Show how to find $D I S$ from the values $D E C[i]$.
Solution: $L I S$ is simply the maximum of all $I N C[i], 1 \leq i \leq n$, as the subsequence has to end somewhere. Similarly, $D I S$ is simply the maximum of all $D E C[i], 1 \leq i \leq n$.
(c) Suppose $i<j$. Prove that it is impossible to have $I N C[i]=$ $I N C[j]$ and $D E C[i]=D E C[j]$.
Solution: Suppose $x_{i}<x_{j}$. Then $I N C[j] \geq I N C[i]+1$ since you can take the maximal increasing sequence ending at x_{i} and append x_{j}. (That may not be optimal, but $I N C[j]$ is at least that length.)
Similarly, suppose $x_{i}>x_{j}$. Then $D E C[j] \geq D E C[i]+1$ since you can take the maximal decreasing sequence ending at x_{i} and append x_{j}.
(d) Deduce the following celebrated results (called the Monotone Subsequence Theorem) of Paul Erdős and George Szekeres: Let $m=a b+1$. Then any sequence x_{1}, \ldots, x_{m} of distinct real numbers either $L I S>a$ or $D I S>b$. (Idea: Assume not and look at the pairs (INC[i], DEC[i]).)
Solution: If $L I S \leq a$ and $D I S \leq b$ then there are only $a b$ possibilities for the pair ($I N C[i], D E C[i]$), but from the previous part we have $a b+1$ distinct pairs!
4. Find an optimal parenthesization of a matrix-chain product whose sequence of dimensions is $5,10,3,12,5,50,6$. Solution:
The matrix chain product of $A_{1} A_{2} A_{3} \ldots A_{n}$ can be broken down to $\left(A_{1} \ldots A_{k}\right)\left(A_{k+1} \ldots A_{n}\right)$. To find an optimal parenthesization for n matrices, we find the subset of k matrices, where $k<n$. And then compose them altogether.
In our algorithm, we have two matrices, one to record the minimum number of operations it takes and the other to recored the parenthesization.
$\operatorname{Matrix}[\mathrm{i}][\mathrm{j}]=0(\mathrm{i}=\mathrm{j})$
$\operatorname{Matrix}[\mathrm{i}][\mathrm{j}]=\operatorname{minm}[\mathrm{i}][\mathrm{k}]+\mathrm{m}[\mathrm{k}+1][\mathrm{j}]+\mathrm{p}_{\mathrm{i}-1} \mathrm{p}_{\mathrm{k}} \mathrm{p}_{\mathrm{j}}$
Result $[\mathrm{i}][\mathrm{j}]=\mathrm{k}+1$ which gives min values to Matrix $[\mathrm{i}][\mathrm{j}]$

MATRIX-CHAIN-ORDER()

for $(\mathrm{t}=1 ; \mathrm{t}<\mathrm{p} ; \mathrm{t}++)$

$$
\text { for }(\mathrm{i}=0 ; \mathrm{i}<\mathrm{p}-\mathrm{t} ; \mathrm{i}++)
$$

$$
\operatorname{for}(\mathrm{k}=\mathrm{i} ; \mathrm{k}<\mathrm{i}+\mathrm{t} ; \mathrm{k}++)
$$

$\operatorname{matrix}[\mathrm{i}][\mathrm{i}+\mathrm{t}]=\operatorname{matrix}[\mathrm{i}][\mathrm{k}]+\operatorname{matrix}[\mathrm{k}+1][\mathrm{i}+\mathrm{t}]+\operatorname{size}[\mathrm{i}] * \operatorname{size}[\mathrm{k}+1] * \operatorname{size}[\mathrm{i}+\mathrm{t}$ result $[\mathrm{i}][\mathrm{i}+\mathrm{t}]=\mathrm{k}+1$;

Matrix $[\mathrm{i}][\mathrm{j}]$ as following

0	150	330	405	1655	2010
0	0	360	330	2430	1950
0	0	0	180	930	1770
0	0	0	0	3000	1860
0	0	0	0	0	1500
0	0	0	0	0	0

Result[$[1][j]$ as following

0	1	2	2	4	2
0	0	2	2	2	2
0	0	0	3	4	4
0	0	0	0	4	4
0	0	0	0	0	5
0	0	0	0	0	0

Therefore the optimal parenthesization is (AB)((CD)(EF))
For example, Matrix[2][5] gives the optimal matrix chain product of CDEF. The optimal choice comes from the minimum of $\mathrm{C}(\mathrm{DEF})$, (CD)(EF), (CDE)F. Take C(DEF) for example. It divides into subproblem C and DEF. C is given by Matrix[2][2], which is 0 since C
is itself. DEF is given by Matrix[3][5], which is 1860 . C is a matrix of $3^{*} 12$. The result of DEF is a matrix of $12^{*} 6$. Therefore, $p_{i-1} p_{k} p_{j}$ equals $3^{*} 12^{*} 6=216$. The number of operations taken to get C(DEF) is therefore $1860+216=2076$. We can also get $(\mathrm{CD})(\mathrm{EF})$ and (CDE)F with the same manner. They are 1770 and 1830. As a result, we take 1770 for Matrix[2][5] and 4 for $\mathrm{k}+1$, which is recorded in Result[2][5].
5. Some exercises in logarithms:
(a) Write $\lg \left(4^{n} / \sqrt{n}\right)$ in simplest form. What is its asymptotic value. Solution: $n \lg (4)-\frac{1}{2} \lg (n)=2 n-\frac{\lg n}{2}$.
(b) Which is bigger, 5^{313340} or 7^{271251} ? Give reason. (You can use a calculator.)
Solution: The numbers themselves are too big for calculators but compare their $l g s$, which are around 727000 and 761000 respectively so the second is bigger.
(c) Simplify $n^{2} \lg \left(n^{2}\right)$ and $\lg ^{2}\left(n^{3}\right)$.

Solution: $2 n^{2} \lg (n)$ and $(3 \lg n)^{2}=9 \lg ^{2} n$.
(d) Solve (for x) the equation $e^{-x^{2} / 2}=\frac{1}{n}$.

Solution: $-\frac{x^{2}}{2}=\lg (1 / n)=-\lg n$ so $\frac{x^{2}}{2}=\lg n$ so $x^{2}=2 \lg n$ so $x=\sqrt{2} \sqrt{\ln n}$.
(e) Write $\log _{n} 2^{n}$ and $\log _{n} n^{2}$ in simple form.

Solution: The first is that x for which $n^{x}=2^{n}$ so $x \lg (n)=n$ so $x=\frac{n}{\ln (n)}$ is the answer. For the second the answer is 2 .
(f) What is the relationship between $\lg n$ and $\log _{3} n$?

Solution: $\log _{3} n=\frac{\lg n}{\lg 3}$. As $\lg (3) \sim 1.5$ is a constant they are "the same" in Θ-land.
(g) Assume $i<n$. How many times need i be doubled before it reaches (or exceeds) n ?
Solution:If we double x times we reach $i 2^{x}$ so we need $i 2^{x} \geq n$, or $2^{x} \geq \frac{n}{i}$ or $x \geq \lg \left(\frac{n}{i}\right)$. As x need be an integer the precise number of times is $\left\lceil\lg \left(\frac{n}{i}\right)\right\rceil$.
(h) Write $\lg \left[n^{n} e^{-n} \sqrt{2 \pi n}\right]$ precisely as a sum in simplest form. What is it asymptotic to as $n \rightarrow \infty$? What is interesting about the bracketed expression?
Solution: This is Stirling's Formula and is asymptotic to n !. Precisely

$$
\lg \left[n^{n} e^{-n} \sqrt{2 \pi n}\right]=n \lg n-n \lg e+\frac{1}{2} \lg (2 \pi)+\frac{1}{2} \lg n
$$

which is asymptotic to $n \lg n$.

