
Fundamental Algorithms, Assignment 6
Solutions

1. Consider a Binary Search Tree T with vertices a, b, c, d, e, f, g, h and
ROOT [T ] = a and with the following values (N means NIL)

vertex a b c d e f g h
parent N e e a d g c a

left h N N e c N f N
right d N g N b N N N
key 80 170 140 200 150 143 148 70

Draw a nice picture of the tree. Illustrate INSERT[i]where key[i]=100.
Solution:Here is the picture, without the key values.

a

h d

e

c b

g

f

For INSERT[i]:
We start at root a with key[a] = 80. As 80 < 100 we replace a by its
right child d with key[d] = 200. As 100 < 200 we replace d by its left
child e with key[e] = 150. As 100 < 150 we replace e by its left child c

with key[c] = 140. As 100 < 140 we replace c by its left child. But its
left child is NIL so we make the new vertex i its left child by setting
p[i] = c and left[c] = i.

2. Continuing with the Binary Search Tree of the previous problem:

(a) Which is the successor of c. Illustrate how the program SUCCESSOR

will find it.
Solution:The successor of c is f . As c has a right child g, SUC-
CESSOR will call MIN[g] which will go to the left as long as
possible, ending (in one step) at f .

(b) Which is the minimal element? Illustrate how the program MIN

will find it.
Solution:h. Start at root a. Go to left: h. Go to left: NIL.
Return h.



(c) Illustrate the program DELETE[e]

Solution:There are two approaches (equally correct) to DELETE[x]
when x has two children. One can effectively replace x by the
maximum of its left tree or the minimum of its right tree.
Solution 1: e has a left child c. Applying MAX[c] gives g. g

has a left child f . So we splice f into g’s place by resetting
right[c] = f and p[f ] = c and we put g in e’s place, setting
left[d] = g, left[g] = c, right[g] = b. and p[g] = d.
Solution 2: e has right child b. Applying MIN[b] gives b itself.
We splice b into e’s place by resetting p[c] = b and left[b] = c and
p[b] = d and left[d] = e

3. What would the BST tree look like if you start with the root a1 with
key[a1] = 1 (and nothing else) and then you apply

INSERT [a2], . . . , INSERT [an]

in that order where key[ai] = i for each 2 ≤ i ≤ n? Suppose the same
assumptions of starting with a1 and the key values but the INSERT
commands were done in reverse order

INSERT [an], . . . , INSERT [a2]

Solution:In the first case each would go all the way to the right and
you would get a line to the right. In the second case an would be to
the right of the root a1 and the remaining would from a line going to
the left from an. Note that in either case you get a “long stringy” tree
which will be very inefficient.

4. Set N = 2K . We’ll represent integers 0 ≤ x < N by A[0 · · · (K − 1)]
with x =

∑
k−1

i=0
A[i]2i. (This is the standard binary representation of

x, read right to left.) Consider the following algorithms:

Procedure JACK[A]
I ← 0
A[0] + +
WHILE (A[I] = 2 AND I < K − 1)

A[I]← 0
I ++
A[I] + +

END WHILE



and:

ANYA[A]
FOR J = 1 TO N − 1

DO JACK[A]
END FOR

If the input to JACK[A] is the binary representation of x with 0 ≤
x ≤ N − 2 describe what the output will be.
Solution:JACK increments by one, the final value of A will be the
binary representation of x+1. For example, if A (reading right to left)
is 1100111 then it becomes 1100112, 1100120, 1100200, 11001000 and
then stops.

5. Let T be a binary search tree on nodes 1, . . . , N (in no particular
order in the tree) with height H For any vertex v define depth[v] as
the distance from v to the root. (The root has depth zero, its children
have depth one, grandchildren two, etc.) Let TD denote the sum of
depth[v] for all nodes v.

(a) Give an algorithm to find any particular depth[i] in time O(H)
and TD in time O(HN).
Solution:For a particular i climb to the top:
DEPTH[i]
d← 0
WHILE i 6= root[T ]
d++
end WHILE
return d

For TD go through all vertices and take their sum.

(b) Modifying In-Order-Tree-Walk give an algorithm that finds all

depth[i] and also TD in total time O(N) – regardless of the value
of H.
Solution:Initialize r = root(T ), depth[r] = 0, TD = 0. Now
run IOTW[r]. When you call IOTW [s] (s 6= r) set depth(s) =
depth(π(s)) + 1 (note the depth of the parent has already been
calculated!) and TD ← TD + depth[s].


