Fundamental Algorithms, Assignment 6
Solutions

1. Consider a Binary Search Tree T' with vertices a,b,c,d,e, f,g,h and
ROOT|T] = a and with the following values (N means NIL)

vertex | a b ¢ d e f g h
parent | N e e a d g c a
left | h N N e c N f N
right | d N g N b N N N
key | 80 170 140 200 150 143 148 70

Draw a nice picture of the tree. Illustrate INSERT [i] where key [1]=100.
Solution:Here is the picture, without the key values.

a

For INSERT[i]:

We start at root a with key[a] = 80. As 80 < 100 we replace a by its
right child d with key[d] = 200. As 100 < 200 we replace d by its left
child e with key[e] = 150. As 100 < 150 we replace e by its left child ¢
with key[c] = 140. As 100 < 140 we replace ¢ by its left child. But its
left child is NIL so we make the new vertex ¢ its left child by setting
pli] = c and left[c] = i.

2. Continuing with the Binary Search Tree of the previous problem:

(a) Which is the successor of c. Illustrate how the program SUCCESSOR
will find it.
Solution:The successor of ¢ is f. As ¢ has a right child g, SUC-
CESSOR will call MIN[g] which will go to the left as long as
possible, ending (in one step) at f.

(b) Which is the minimal element? Illustrate how the program MIN
will find it.
Solution:h. Start at root a. Go to left: h. Go to left: NIL.
Return h.



(c) Hlustrate the program DELETE[e]
Solution:There are two approaches (equally correct) to DELETE [x]
when x has two children. One can effectively replace z by the
maximum of its left tree or the minimum of its right tree.
Solution 1: e has a left child ¢. Applying MAX[c] gives g. ¢
has a left child f. So we splice f into g’s place by resetting
rightlc] = f and p[f] = ¢ and we put g in e’s place, setting
leftld] = g, left[g] = ¢, right]g] = b. and p[g] = d.
Solution 2: e has right child b. Applying MIN[b] gives b itself.
We splice b into e’s place by resetting p[c] = b and left[b] = ¢ and
p[b] = d and left]d] = e

3. What would the BST tree look like if you start with the root aq with
keylai] = 1 (and nothing else) and then you apply

INSERTas], ..., INSERT[ay]

in that order where key[a;] = i for each 2 < i < n? Suppose the same
assumptions of starting with a; and the key values but the INSERT
commands were done in reverse order

INSERTay),...,INSERT[as)]

Solution:In the first case each would go all the way to the right and
you would get a line to the right. In the second case a,, would be to
the right of the root a1 and the remaining would from a line going to
the left from a,,. Note that in either case you get a “long stringy” tree
which will be very inefficient.

4. Set N = 2K. We'll represent integers 0 < x < N by A[0--- (K — 1)]
with x = Zf:_ol A[i]2¢. (This is the standard binary representation of
x, read right to left.) Consider the following algorithms:

Procedure JACK|[A]

I+0

Al0] + +

WHILE (A[I] =2 AND ] < K — 1)
AlIl <0
I+ +
Alll+ +

END WHILE



and:

ANYA[A]
FOR.J=1TO N — 1

DO JACK|A]
END FOR

If the input to JACK]|A] is the binary representation of x with 0 <
x < N — 2 describe what the output will be.

Solution: JACK increments by one, the final value of A will be the
binary representation of z+ 1. For example, if A (reading right to left)
is 1100111 then it becomes 1100112, 1100120, 1100200, 11001000 and
then stops.

. Let T be a binary search tree on nodes 1,...,N (in no particular
order in the tree) with height H For any vertex v define depth[v] as
the distance from v to the root. (The root has depth zero, its children
have depth one, grandchildren two, etc.) Let T'D denote the sum of
depth[v] for all nodes v.

(a) Give an algorithm to find any particular depth[i] in time O(H)
and T'D in time O(HN).
Solution:For a particular ¢ climb to the top:
DEPTH]i]
d<+0
WHILE ¢ # root[T]
d++
end WHILE
return d

For T'D go through all vertices and take their sum.

(b) Modifying In-Order-Tree-Walk give an algorithm that finds all
depth[i] and also T'D in total time O(NN) — regardless of the value
of H.
Solution:Initialize r = root(T), depth[r] = 0, TD = 0. Now
run IOTW]r]. When you call IOTW |s] (s # r) set depth(s) =
depth(m(s)) + 1 (note the depth of the parent has already been
calculated!) and T'D < T'D + depth]s].



