Fundamental Algorithms, Assignment 6 Solutions

1. Consider a Binary Search Tree T with vertices a, b, c, d, e, f, g, h and $\operatorname{ROOT}[T]=a$ and with the following values (N means NIL)

vertex	a	b	c	d	e	f	g	h
parent	N	e	e	a	d	g	c	a
left	h	N	N	e	c	N	f	N
right	d	N	g	N	b	N	N	N
key	80	170	140	200	150	143	148	70

Draw a nice picture of the tree. Illustrate INSERT [i] where key [i] =100. Solution:Here is the picture, without the key values.
a
h
d
e

For InSERT[i]:
We start at root a with $k e y[a]=80$. As $80<100$ we replace a by its right child d with key[d] $=200$. As $100<200$ we replace d by its left child e with key $[e]=150$. As $100<150$ we replace e by its left child c with key $[c]=140$. As $100<140$ we replace c by its left child. But its left child is NIL so we make the new vertex i its left child by setting $p[i]=c$ and $l e f t[c]=i$.
2. Continuing with the Binary Search Tree of the previous problem:
(a) Which is the successor of c. Illustrate how the program SUCCESSOR will find it.
Solution: The successor of c is f. As c has a right child g, SUCCESSOR will call MIN[g] which will go to the left as long as possible, ending (in one step) at f.
(b) Which is the minimal element? Illustrate how the program MIN will find it.
Solution: h. Start at root a. Go to left: h. Go to left: NIL. Return h.
(c) Illustrate the program DELETE [e]

Solution: There are two approaches (equally correct) to DELETE [x] when x has two children. One can effectively replace x by the maximum of its left tree or the minimum of its right tree.
Solution 1: e has a left child c. Applying MAX [c] gives $g . g$ has a left child f. So we splice f into g 's place by resetting $\operatorname{right}[c]=f$ and $p[f]=c$ and we put g in e 's place, setting $l e f t[d]=g$, left $[g]=c$, right $[g]=b$. and $p[g]=d$.
Solution 2: e has right child b. Applying MIN[b] gives b itself. We splice b into e 's place by resetting $p[c]=b$ and left $[b]=c$ and $p[b]=d$ and $\operatorname{left}[d]=e$
3. What would the BST tree look like if you start with the root a_{1} with $k e y\left[a_{1}\right]=1$ (and nothing else) and then you apply

$$
\operatorname{INSERT}\left[a_{2}\right], \ldots, \operatorname{INSERT}\left[a_{n}\right]
$$

in that order where $k e y\left[a_{i}\right]=i$ for each $2 \leq i \leq n$? Suppose the same assumptions of starting with a_{1} and the key values but the INSERT commands were done in reverse order

$$
\operatorname{INSERT}\left[a_{n}\right], \ldots, \operatorname{INSERT}\left[a_{2}\right]
$$

Solution:In the first case each would go all the way to the right and you would get a line to the right. In the second case a_{n} would be to the right of the root a_{1} and the remaining would from a line going to the left from a_{n}. Note that in either case you get a "long stringy" tree which will be very inefficient.
4. Set $N=2^{K}$. We'll represent integers $0 \leq x<N$ by $A[0 \cdots(K-1)]$ with $x=\sum_{i=0}^{k-1} A[i] 2^{i}$. (This is the standard binary representation of x, read right to left.) Consider the following algorithms:
Procedure JACK[A]
$I \leftarrow 0$
$A[0]++$
WHILE $(A[I]=2$ AND $I<K-1)$
$A[I] \leftarrow 0$
$I++$
$A[I]++$
END WHILE
and:
ANYA[A]
FOR $J=1$ TO $N-1$
DO $J A C K[A]$
END FOR
If the input to $J A C K[A]$ is the binary representation of x with $0 \leq$ $x \leq N-2$ describe what the output will be.
Solution: JACK increments by one, the final value of A will be the binary representation of $x+1$. For example, if A (reading right to left) is 1100111 then it becomes 1100112, 1100120, 1100200, 11001000 and then stops.
5. Let T be a binary search tree on nodes $1, \ldots, N$ (in no particular order in the tree) with height H For any vertex v define depth $[v]$ as the distance from v to the root. (The root has depth zero, its children have depth one, grandchildren two, etc.) Let $T D$ denote the sum of depth $[v]$ for all nodes v.
(a) Give an algorithm to find any particular depth[i] in time $O(H)$ and $T D$ in time $O(H N)$.
Solution: For a particular i climb to the top:
DEPTH[i]
$d \leftarrow 0$
WHILE $i \neq \operatorname{root}[T]$
$d++$
end WHILE
return d
For $T D$ go through all vertices and take their sum.
(b) Modifying In-Order-Tree-Walk give an algorithm that finds all depth $[i]$ and also $T D$ in total time $O(N)$ - regardless of the value of H.
Solution:Initialize $r=\operatorname{root}(T)$, $\operatorname{depth}[r]=0, T D=0$. Now run IOTW[r]. When you call IOTW $[s](s \neq r)$ set $\operatorname{depth}(s)=$ $\operatorname{depth}(\pi(s))+1$ (note the depth of the parent has already been calculated!) and $T D \leftarrow T D+\operatorname{depth}[s]$.

