Fundamental Algorithms, Assignment 6
Solutions

1. Consider a Binary Search Tree T with vertices a,b,c,d,e,f,g,h and $ROOT[T] = a$ and with the following values (N means NIL)

<table>
<thead>
<tr>
<th>vertex</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
<th>f</th>
<th>g</th>
<th>h</th>
</tr>
</thead>
<tbody>
<tr>
<td>parent</td>
<td>N</td>
<td>e</td>
<td>e</td>
<td>a</td>
<td>d</td>
<td>g</td>
<td>c</td>
<td>a</td>
</tr>
<tr>
<td>left</td>
<td>h</td>
<td>N</td>
<td>N</td>
<td>e</td>
<td>c</td>
<td>N</td>
<td>f</td>
<td>N</td>
</tr>
<tr>
<td>right</td>
<td>d</td>
<td>N</td>
<td>g</td>
<td>N</td>
<td>b</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>key</td>
<td>80</td>
<td>170</td>
<td>140</td>
<td>200</td>
<td>150</td>
<td>148</td>
<td>70</td>
<td></td>
</tr>
</tbody>
</table>

Draw a nice picture of the tree. Illustrate $\text{INSERT}[i]$ where $\text{key}[i] = 100$.
Solution: Here is the picture, without the key values.

```
    a
   / \     \\
  h   d
    / \
   e   \\
  c   b
   \ \
    f
```

For $\text{INSERT}[i]$: We start at root a with $\text{key}[a] = 80$. As $80 < 100$ we replace a by its right child d with $\text{key}[d] = 200$. As $100 < 200$ we replace d by its left child e with $\text{key}[e] = 150$. As $100 < 150$ we replace e by its left child c with $\text{key}[c] = 140$. As $100 < 140$ we replace c by its left child. But its left child is NIL so we make the new vertex i its left child by setting $p[i] = c$ and $\text{left}[c] = i$.

2. Continuing with the Binary Search Tree of the previous problem:

(a) Which is the successor of c. Illustrate how the program SUCCESSOR will find it.
Solution: The successor of c is f. As c has a right child g, SUCCESSOR will call $\text{MIN}[g]$ which will go to the left as long as possible, ending (in one step) at f.

(b) Which is the minimal element? Illustrate how the program MIN will find it.
Solution: h. Start at root a. Go to left: h. Go to left: NIL. Return h.
(c) Illustrate the program \texttt{DELETE[e]}

\textbf{Solution:} There are two approaches (equally correct) to \texttt{DELETE[x]} when \(x\) has two children. One can effectively replace \(x\) by the maximum of its left tree or the minimum of its right tree.

\textbf{Solution 1:} \(e\) has a left child \(c\). Applying \texttt{MAX[c]} gives \(g\). \(g\) has a left child \(f\). So we splice \(f\) into \(g\)'s place by resetting \(\text{right}[d] = g\), \(\text{left}[g] = c\), \(\text{right}[g] = b\), and \(p[g] = d\).

\textbf{Solution 2:} \(e\) has right child \(b\). Applying \texttt{MIN[b]} gives \(b\) itself. We splice \(b\) into \(e\)'s place by resetting \(p[c] = b\) and \(\text{left}[b] = c\) and \(p[b] = d\) and \(\text{left}[d] = e\).

3. Set \(N = 2^K\). We'll represent integers \(0 \leq x < N\) by \(A[0\ldots(K-1)]\) with \(x = \sum_{i=0}^{K-1} A[i]2^i\). (This is the standard binary representation of \(x\), read right to left.) Consider the following algorithms:

\texttt{Procedure JACK[A]}
\begin{verbatim}
I ← 0
A[0] ++
\end{verbatim}
\begin{verbatim}
WHILE (A[I] = 2 AND I < K - 1)
\begin{verbatim}
A[I] ← 0
I ++
A[I] ++
\end{verbatim}
\end{verbatim}
\begin{verbatim}
END WHILE
\end{verbatim}

and:

\texttt{ANYA[A]}
\begin{verbatim}
FOR J = 1 TO N - 1
\begin{verbatim}
DO JACK[A]
\end{verbatim}
\end{verbatim}
\begin{verbatim}
END FOR
\end{verbatim}

If the input to \texttt{JACK[A]} is the binary representation of \(x\) with \(0 \leq x \leq N - 2\) describe what the output will be.

\textbf{Solution:} \texttt{JACK} increments by one, the final value of \(A\) will be the binary representation of \(x+1\). For example, if \(A\) (reading right to left) is 1100111 then it becomes 1100112, 1100120, 1100200, 11001000 and then stops.

4. Let \(T\) be a binary search tree on nodes 1, \ldots, \(N\) (in no particular order in the tree) with height \(H\). For any vertex \(v\) define \texttt{depth[v]} as the distance from \(v\) to the root. (The root has depth zero, its children
have depth one, grandchildren two, etc.) Let TD denote the sum of $depth[v]$ for all nodes v.

(a) Give an algorithm to find any particular $depth[i]$ in time $O(H)$ and TD in time $O(HN)$.

Solution: For a particular i climb to the top:

1. DEPTH[i]
2. $d \leftarrow 0$
3. WHILE $i \neq \text{root}[T]$
4. $d + +$
5. end WHILE
6. return d

For TD go through all vertices and take their sum.

(b) Modifying In-Order-Tree-Walk give an algorithm that finds all $depth[i]$ and also TD in total time $O(N)$ – regardless of the value of H.

Solution: Initialize $r = \text{root}(T)$, $depth[r] = 0$, $TD = 0$. Now run IOTW[r]. When you call $IOTW[s]$ ($s \neq r$) set $depth(s) = depth(\pi(s)) + 1$ (note the depth of the parent has already been calculated!) and $TD \leftarrow TD + depth[s]$.