Fundamental Algorithms, Assignment 4
Solutions

1. Consider the recursion \(T(n) = 9T(n/3) + n^2 \) with initial value \(T(1) = 1 \). Calculate the precise values of \(T(3), T(9), T(27), T(81), T(243) \). Make a good (and correct) guess as to the general formula for \(T(3^i) \) and write this as \(T(n) \). (Don’t worry about when \(n \) is not a power of three.) Now use the Master Theorem to give, in Thetaland, the asymptotics of \(T(n) \). Check that the two answers are consistent.

Solution: \(T(3) = 9(1) + 3^3 = 18 = 2(9) \), \(T(9) = 9(18) + 9^2 = 243 = 3(81) \), \(T(27) = 9(243) + 729 = 2916 = 4(729) \), \(T(81) = 32805 = 5(6561) \), \(T(243) = 354294 = 6(59049) \). In general, \(T(3^i) = (i + 1)3^i \).

With \(n = 3^i \) we have \(3^{2i} = n^2 \) and \(i = \log_3 n \) so the formula is \(T(n) = n^2(1 + \log_3 n) \). In Thetaland, \(T(n) = \Theta(n^2 \lg n) \). With the Master Theorem, as \(\log_3 9 = 2 \) we are in the special case which gives indeed \(T(n) = \Theta(n^2 \lg n) \).

Another approach is via the auxiliary function \(S(n) \) discussed in class. Here \(S(n) = T(n)/n^2 \). Dividing the original recursion by \(n^2 \) gives

\[
\frac{T(n)}{n^2} = \frac{T(n/3)}{(n/3)^2} + 1
\]

so that

\(S(n) = S(n/3) + 1 \) with initial value \(S(1) = T(1)/1^2 = 1 \)

so that

\(S(n)1 + \log_3 n \) and so \(T(n) = n^2(1 + \log_3 n) \)

2. Use the Master Theorem to give, in Thetaland, the asymptotics of these recursions:

(a) \(T(n) = 6T(n/2) + n\sqrt{n} \)

Solution: As \(\log_2 6 = \frac{\log 6}{\log 2} = 2.58\cdots > 3/2 \) we have Low Overhead and \(T(n) = \Theta(n^{\log_2 6}) \).

(b) \(T(n) = 4T(n/2) + n^5 \)

Solution: \(\log_2 4 = 2 < 5 \) so we have High Overhead and \(T(n) = \Theta(n^5) \).

(c) \(T(n) = 4T(n/2) + 7n^2 + 2n + 1 \)

Solution: \(\log_2 4 = 2 \) and the Overhead is \(\Theta(n^2) \) so \(T(n) = \Theta(n^2 \lg n) \).
3. **Toom-3** is an algorithm similar to the Karatsuba algorithm discussed in class. (Don’t worry how **Toom-3** really works, we just want an analysis given the information below.) It multiplies two n digit numbers by making five recursive calls to multiplication of two $n/3$ digit numbers plus thirty additions and subtractions. Each of the additions and subtractions take time $O(n)$. Give the recursion for the time $T(n)$ for **Toom-3** and use the Master Theorem to find the asymptotics of $T(n)$. Compare with the time $\Theta(n \log_2 3)$ of Karatsuba. Which is faster when n is large?

Solution: $T(n) = 5T(n/3) + O(n)$ as the thirty is absorbed into the big oh n term. From the master theorem $T(n) = \Theta(n^{\log_3 5})$. As

$$\log_3 5 = \frac{\ln 5}{\ln 3} = 1.46 \cdots < 1.58 \cdots = \log_2 3$$

it is better that the $\Theta(n^{\log_2 3})$ of Karatsuba. (In practice unless n is really large Karatsuba does better because **Toom-3** has large constant factors.)

4. Write the following sums in the form $\Theta(g(n))$ with $g(n)$ one of the standard functions. In each case give reasonable (they needn’t be optimal) positive c_1, c_2 so that the sum is between $c_1 g(n)$ and $c_2 g(n)$ for n large.

5. Set $K = \lfloor \sqrt{N} \rfloor$. Let $A[1 \cdots N]$ be an (unsorted) array of numbers. Consider the following algorithm to output the $K+1$-th largest value:

```
BUILD-MAX-HEAP[A]
FOR I=1 TO K
    EXTRACT-MAX[A]
END FOR
RETURN A[1]
```

Analyze the time this algorithm takes. Your answer should be $\Theta(g(n))$ for some “nice” $g(n)$.

Solution: We know BUILD-MAX-HEAP takes time $O(n)$. In the loop for each I EXTRACT-MAX takes time $O(\log(n-i))$. As i only goes to \sqrt{n} all the $n-i \sim n$ so each takes time $O(\log n)$. The whole loop then takes time $O(k \log n)$ or $O(\sqrt{n} \log n)$. So we have two parts – but we know $\sqrt{n} \log n = o(n)$ so BUILD-MAX-HEAP dominates and the total time is $O(n)$. (BTW: This is faster than sorting A and taking $A[K + 1]$.)
(a) \(n^2 + (n + 1)^2 + \ldots + (2n)^2 \)

Solution: \(\Theta(n^3) \). There are \(\sim n \) terms all between \(n^2 \) and \(4n^2 \) so the sum is between \(n^3(1 + o(1)) \) and \(4n^3(1 + o(1)) \).

(b) \(\lg^2(1) + \lg^2(2) + \ldots + \lg^2(n) \)

Solution: \(\Theta(n \lg^2 n) \). There are \(n \) terms all at most \(\lg^2(n) \) so an upper bound is \(n \lg^2(n) \). Lopping off the bottom half of the terms we still have \(n/2 \) terms and each is at least \(\lg^2(n/2) = (\lg(n) - 1)^2 \sim \lg^2 n \) so the lower bound is \((1 + o(1))(\frac{1}{2}) \lg^2 n \).

(c) \(1^3 + \ldots + n^3 \)

Solution: \(T(n) = \Theta(n^4) \). Upper bound \(n^4 \) as \(n \) terms, each at most \(n \). Lopping off bottom half yields \(n/2 \) terms, each at least \((n/2)^3 \) giving a lower bound \((n/2)(n/2)^3 = n^4/16 \).

6. Give an algorithm for subtracting two \(n \)-digit decimal numbers. The numbers will be inputted as \(A[0 \ldots N] \) and \(B[0 \ldots N] \) and the output should be \(C[0 \ldots N] \). How long does your algorithm take, expressing your answer in one of the standard \(\Theta(g(n)) \) forms.

Solution: Here is one way, the term \texttt{BORROW} being the truth value of whether you have “borrowed.”

\begin{verbatim}
BORROW=false;
FOR I=0 TO N;
 IF BORROW=false THEN X=A[I]-B[I];
 IF BORROW=true THEN X=A[I]-1-B[I];
 IF X \geq 0 THEN
 C[I]=X;
 BORROW=false;
 ELSE
 C[I]=X+10;
 BORROW=true;
ENDFOR
IF BORROW=true THEN ERROR;
END
\end{verbatim}

This takes only a single pass and so is a linear time, that is \(\Theta(N) \) algorithm.

Another approach (my thanks to Yahui Cui) more matches what is actually learned in grade school. When \(A[I] < B[I] \) you need to borrow from place \(I + 1 \). But you may have \(A[I + 1] = 0 \). You put in a \texttt{WHILE} loop, starting at \(J = I + 1 \), that increments \(J \) until reaching
$A[J] \neq 0$. Then you slide back down from J to I appropriately. For example, at

\begin{align*}
6 & 5 4 3 2 1 0 \text{ (index)} \\
2 & 6 0 0 0 0 4 \text{ (A)} \\
- & 1 7 3 5 8 2 6 \text{ (B)}
\end{align*}

At $I = 0$ the while loop would take you to $I = 5$. Then you go back down resetting to

\begin{align*}
6 & 5 4 3 2 1 0 \text{ (index)} \\
2 & 5 9 9 9 9 14 \text{ (A)} \\
- & 1 7 3 5 8 2 6 \text{ (B)}
\end{align*}

and then you would subtract with no borrowing until you reached $I = 5$ below.

\begin{align*}
6 & 5 4 3 2 1 0 \text{ (index)} \\
2 & 5 9 9 9 9 14 \text{ (A)} \\
- & 1 7 3 5 8 2 6 \text{ (B)}
\end{align*}

\begin{align*}
\hline
6 & 4 1 7 8
\end{align*}

This also takes time $\Theta(n)$ but the argument is more subtle. Any particular column could itself take time $\Theta(n)$ as you might have to take the while loop all the way up to N. Here is one way: a column can only switch from 0 to 9 once so the WHILE loops must be over disjoint intervals and so can only have total number $O(N)$ steps.