
Fundamental Algorithms, Assignment 4
Solutions

1. Consider the recursion T (n) = 9T (n/3) +n2 with initial value T (1) =
1. Calculate the precise values of T (3), T (9), T (27), T (81), T (243).
Make a good (and correct) guess as to the general formula for T (3i)
and write this as T (n). (Don’t worry about when n is not a power
of three.) Now use the Master Theorem to give, in Thetaland, the
asymptotics of T (n). Check that the two answers are consistent.
Solution:T (3) = 9(1) + 33 = 18 = 2(9), T (9) = 9(18) + 92 = 243 =
3(81), T (27) = 9(243) + 729 = 2916 = 4(729), T (81) = 32805 =
5(6561), T (243) = 354294 = 6(59049). In general, T (3i) = (i + 1)32i.
With n = 3i we have 32i = n2 and i = log3 n so the formula is
T (n) = n2(1 + log3 n). In Thetaland, T (n) = Θ(n2 lg n). With the
Master Theorem, as log3 9 = 2 we are in the special case which gives
indeed T (n) = Θ(n2 lg n).

Another approach is via the auxilliary function S(n) discussed in class.
Here S(n) = T (n)/n2. Dividing the original recursion by n2 gives

T (n)

n2
=

T (n/3)

(n/3)2
+ 1

so that

S(n) = S(n/3) + 1 with initial value S(1) = T (1)/12 = 1

so that
S(n)1 + log3 n and so T (n) = n2(1 + log3 n)

2. Use the Master Theorem to give, in Thetaland, the asymptotics of
these recursions:

(a) T (n) = 6T (n/2) + n
√
n

Solution:As log2 6 = ln 6
ln 2

= 2.58 · · · > 3/2 we have Low Over-
head and T (n) = Θ(nlog

2
6).

(b) T (n) = 4T (n/2) + n5

Solution:log2 4 = 2 < 5 so we have High Overhead and T (n) =
Θ(n5).

(c) T (n) = 4T (n/2) + 7n2 + 2n+ 1
Solution:log2 4 = 2 and the Overhead is Θ(n2) so T (n) =
Θ(n2 lg n.



3. Write the following sums in the form Θ(g(n)) with g(n) one of the
standard functions. In each case give reasonable (they needn’t be
optimal) positive c1, c2 so that the sum is between c1g(n) and c2g(n)
for n large.

4. Set K = ⌊
√
N⌋. Let A[1 · · ·N ] be an (unsorted) array of numbers.

Consider the following algorithm to output the K+1-th largest value:

BUILD-MAX-HEAP[A]
FOR I=1 TO K

EXTRACT-MAX[A]
END FOR

RETURN A[1]

(a) What is the time (by which we mean the number of flips of data)
for the EXTRACT-MAX as a function of N and I. (Caution:
The heap is getting smaller!)
Solution:At a given I the heap has size N − I + 1 so that the
“time” is lg(N − I + 1)

(b) Express the total time for the FOR loop as a summation over I.
Find the asymptotics of the sum.
Solution:We get

k∑

i=1

lg(n− i+ 1)

as the sum. But since 1 ≤ i ≤ k =
√
n all n − i + 1 ∼ n so

that all lg(n − i + 1) ∼ lg(n) so that the sum is asymptotically
k lg(n) =

√
n lg(n).

(c) Analyze the total time this algorithm takes. Your answer should
be Θ(g(n)) for some “nice” g(n).
Solution:The BUILD-MAX-HEAP[A] takes O(n) and the FOR
loop takes O(

√
n lg n) so the BUILD-MAX-HEAP[A] dominates

and the total time is O(n). (It is interesting to note that this is
faster than totally sorting A in time O(n lg n) and then taking
A[K + 1].)

(a) n2 + (n+ 1)2 + . . .+ (2n)2

Solution:Θ(n3). There are ∼ n terms all between n2 and 4n2

so the sum is between n3(1 + o(1)) and 4n3(1 + o(1)).

(b) lg2(1) + lg2(2) + . . .+ lg2(n)
Solution:Θ(n lg2 n). There are n terms all at most lg2(n) so



an upper bound is n lg2(n). Lopping off the bottom half of the
terms we still have n/2 terms and each is at least lg2(n/2) =
(lg(n)− 1)2 ∼ lg2 n so the lower bound is (1 + o(1))(n

2
) lg2 n.

(c) 13 + . . .+ n3.
Solution:T (n) = Θ(n4). Upper bound n4 as n terms, each at
most n. Lopping off bottom half yields n/2 terms, each at least
(n/2)3 giving a lower bound (n/2)(n/2)3 = n4/16.


