Fundamental Algorithms, Assignment 4
Solutions

1. Consider the recursion T'(n) = 9T (n/3) + n? with initial value T'(1) =
1. Calculate the precise values of T'(3),7(9),T(27),T(81),T(243).
Make a good (and correct) guess as to the general formula for T'(3¢)
and write this as T'(n). (Don’t worry about when n is not a power
of three.) Now use the Master Theorem to give, in Thetaland, the
asymptotics of T'(n). Check that the two answers are consistent.
Solution:T'(3) = 9(1) + 3% = 18 = 2(9), T(9) = 9(18) + 9% = 243 =
3(81), T'(27) = 9(243) + 729 = 2916 = 4(729), T'(81) = 32805 =
5(6561), T(243) = 354294 = 6(59049). In general, T'(3%) = (i + 1)3%.
With n = 3% we have 3% = n? and i = logzn so the formula is
T(n) = n%(1 + logzn). In Thetaland, T(n) = O(n%lgn). With the
Master Theorem, as logz 9 = 2 we are in the special case which gives
indeed T'(n) = ©(n?1gn).

Another approach is via the auxilliary function S(n) discussed in class.
Here S(n) = T'(n)/n?. Dividing the original recursion by n? gives
T(n) _T(n/3)

n2 (n/3)? +1

so that
S(n) = S(n/3) + 1 with initial value S(1) = T(1)/1%> = 1

so that
S(n)1 +loggn and so T(n) = n?(1 + logs n)

2. Use the Master Theorem to give, in Thetaland, the asymptotics of
these recursions:

(a) T'(n) =6T(n/2) +nyn
Solution:As log, 6 = % = 2.58--- > 3/2 we have Low Over-
head and T'(n) = ©(n'°826),

(b) T(n) =4T(n/2) + n®
Solution:logy, 4 =2 < 5 so we have High Overhead and T'(n) =
O(n®).

(c) T(n) =4T(n/2) +Tn?+2n +1
Solution:logy4 = 2 and the Overhead is ©(n?) so T(n) =
O(n%lgn.

3. Write the following sums in the form ©(g(n)) with g(n) one of the
standard functions. In each case give reasonable (they needn’t be
optimal) positive ¢, ¢y so that the sum is between ¢1g(n) and cag(n)
for n large.

4. Set K = |v/N|. Let A[l---N] be an (unsorted) array of numbers.
Consider the following algorithm to output the K + 1-th largest value:

BUILD-MAX-HEAP[A]
FOR I=1 TO K
EXTRACT-MAX[A]
END FOR
RETURN A[1]

(a) What is the time (by which we mean the number of flips of data)
for the EXTRACT-MAX as a function of N and I. (Caution:
The heap is getting smaller!)

Solution:At a given I the heap has size N — I 4+ 1 so that the
“time” is lg(N — I + 1)

(b) Express the total time for the FOR loop as a summation over 1.
Find the asymptotics of the sum.

Solution: We get

k
Zlg(n —i+1)
i=1

as the sum. But since 1 < i < k= malln—i+1~nso
that all lg(n — i+ 1) ~ lg(n) so that the sum is asymptotically
klg(n) = v/nlg(n).

(c) Analyze the total time this algorithm takes. Your answer should
be O(g(n)) for some “nice” g(n).
Solution:The BUILD-MAX-HEAP[A] takes O(n) and the FOR
loop takes O(y/nlgn) so the BUILD-MAX-HEAP[A] dominates
and the total time is O(n). (It is interesting to note that this is

faster than totally sorting A in time O(nlgn) and then taking
A[K +1].)

(a) N2+ (n+1)2+...+ (2n)?
Solution:O(n3). There are ~ n terms all between n? and 4n?
so the sum is between n3(1 4 o(1)) and 4n3(1 + o(1)).

(b) 1g*(1) +1g%(2) + ... + 1g%(n)
Solution:O(nlg?n). There are n terms all at most lg?(n) so

an upper bound is nlgz(n). Lopping off the bottom half of the
terms we still have n/2 terms and each is at least lg?(n/2) =
(Ig(n) — 1)% ~ 1g? n so the lower bound is (14 o(1))(%)1g? n.

(c) 13+...+n
Solution:7T'(n) = ©(n*). Upper bound n* as n terms, each at

most n. Lopping off bottom half yields n/2 terms, each at least
(n/2)3 giving a lower bound (n/2)(n/2)% = n*/16.

