Fundamental Algorithms, Assignment 4 Solutions

1. Consider the recursion $T(n) = 9T(n/3) + n^2$ with initial value T(1) =1. Calculate the *precise* values of T(3), T(9), T(27), T(81), T(243). Make a good (and correct) guess as to the general formula for $T(3^i)$ and write this as T(n). (Don't worry about when n is not a power of three.) Now use the Master Theorem to give, in Thetaland, the asymptotics of T(n). Check that the two answers are consistent. Solution: $T(3) = 9(1) + 3^3 = 18 = 2(9), T(9) = 9(18) + 9^2 = 243 =$ 3(81), T(27) = 9(243) + 729 = 2916 = 4(729), T(81) = 32805 = 5(6561), T(243) = 354294 = 6(59049). In general, $T(3^i) = (i + 1)3^{2i}$. With $n = 3^i$ we have $3^{2i} = n^2$ and $i = \log_3 n$ so the formula is $T(n) = n^2(1 + \log_3 n)$. In Thetaland, $T(n) = \Theta(n^2 \lg n)$. With the Master Theorem, as $\log_3 9 = 2$ we are in the special case which gives indeed $T(n) = \Theta(n^2 \lg n)$.

Another approach is via the auxilliary function S(n) discussed in class. Here $S(n) = T(n)/n^2$. Dividing the original recursion by n^2 gives

$$\frac{T(n)}{n^2} = \frac{T(n/3)}{(n/3)^2} + 1$$

so that

$$S(n) = S(n/3) + 1$$
 with initial value $S(1) = T(1)/1^2 = 1$

so that

$$S(n)1 + \log_3 n$$
 and so $T(n) = n^2(1 + \log_3 n)$

- 2. Use the Master Theorem to give, in Thetaland, the asymptotics of these recursions:
 - (a) $T(n) = 6T(n/2) + n\sqrt{n}$ Solution: As $\log_2 6 = \frac{\ln 6}{\ln 2} = 2.58 \dots > 3/2$ we have Low Overhead and $T(n) = \Theta(n^{\log_2 6})$.
 - (b) $T(n) = 4T(n/2) + n^5$ Solution: $\log_2 4 = 2 < 5$ so we have High Overhead and $T(n) = \Theta(n^5)$.
 - (c) $T(n) = 4T(n/2) + 7n^2 + 2n + 1$ Solution: $\log_2 4 = 2$ and the Overhead is $\Theta(n^2)$ so $T(n) = \Theta(n^2 \lg n)$.

- 3. Write the following sums in the form $\Theta(g(n))$ with g(n) one of the standard functions. In each case give reasonable (they needn't be optimal) positive c_1, c_2 so that the sum is between $c_1g(n)$ and $c_2g(n)$ for n large.
- 4. Set $K = \lfloor \sqrt{N} \rfloor$. Let $A[1 \cdots N]$ be an (unsorted) array of numbers. Consider the following algorithm to output the K + 1-th largest value:

BUILD-MAX-HEAP[A] FOR I=1 TO K EXTRACT-MAX[A] END FOR RETURN A[1]

- (a) What is the time (by which we mean the number of flips of data) for the EXTRACT-MAX as a function of N and I. (Caution: The heap is getting smaller!) Solution: At a given I the heap has size N - I + 1 so that the "time" is lg(N - I + 1)
- (b) Express the total time for the FOR loop as a summation over *I*. Find the asymptotics of the sum.Solution: We get

$$\sum_{i=1}^{k} \lg(n-i+1)$$

as the sum. But since $1 \leq i \leq k = \sqrt{n}$ all $n - i + 1 \sim n$ so that all $\lg(n - i + 1) \sim \lg(n)$ so that the sum is asymptotically $k \lg(n) = \sqrt{n} \lg(n)$.

- (c) Analyze the total time this algorithm takes. Your answer should be Θ(g(n)) for some "nice" g(n).
 Solution: The BUILD-MAX-HEAP[A] takes O(n) and the FOR loop takes O(√n lg n) so the BUILD-MAX-HEAP[A] dominates and the total time is O(n). (It is interesting to note that this is faster than totally sorting A in time O(n lg n) and then taking A[K+1].)
- (a) $n^2 + (n+1)^2 + \ldots + (2n)^2$ Solution: $\Theta(n^3)$. There are $\sim n$ terms all between n^2 and $4n^2$ so the sum is between $n^3(1 + o(1))$ and $4n^3(1 + o(1))$.
- (b) $\lg^2(1) + \lg^2(2) + \ldots + \lg^2(n)$ Solution: $\Theta(n \lg^2 n)$. There are *n* terms all at most $\lg^2(n)$ so

an upper bound is $n \lg^2(n)$. Lopping off the bottom half of the terms we still have n/2 terms and each is at least $\lg^2(n/2) = (\lg(n) - 1)^2 \sim \lg^2 n$ so the lower bound is $(1 + o(1))(\frac{n}{2}) \lg^2 n$.

(c) $1^3 + \ldots + n^3$.

Solution: $T(n) = \Theta(n^4)$. Upper bound n^4 as *n* terms, each at most *n*. Lopping off bottom half yields n/2 terms, each at least $(n/2)^3$ giving a lower bound $(n/2)(n/2)^3 = n^4/16$.