Fundamental Algorithms, Problem Set 3
Solutions

1. Write each of the following functions as \(\Theta(g(n)) \) where \(g(n) \) is one of the standard forms: \(2n^3 - 11n + 98 \); \(6n + 43n \lg n \); \(63n^2 + 14n \lg^5 n \); \(3 + \frac{5}{n} \).

Solution: In order, \(\Theta(n^4) \), \(\Theta(n \lg n) \), \(\Theta(n^2) \), \(\Theta(1) \).

2. Illustrate the operation of \texttt{RADIX-SORT} on the list: COW, DOG, SEA, RUG, ROW, MOB, BOX, TAB, BAR, EAR, TAR, DIG, BIG, TEA, NOW, FOX following the Figure in the Radix-Sort section. (Use alphabetical order and sort one letter at a time.)

Solution: From left to right:

```
COW  SEA  TAB  BAR
DOG  TEA  BAR  BIG
SEA  MOB  EAR  BOX
RUG  TAB  TAR  COW
ROW  DOG  SEA  DIG
MOB  RUG  TEA  DOG
BOX  DIG  DIG  EAR
TAB  BIG  BIG  FOX
BAR  BAR  MOB  MOB
EAR  EAR  DOG  NOW
TAR  TAR  COW  ROW
DIG  COW  ROW  RUG
BIG  ROW  NOW  SEA
TEA  NOW  BOX  TAB
NOW  BOX  FOX  TAR
FOX  FOX  RUG  TEA
``` 

3. Given \(A[1 \cdots N] \) with \(0 \leq A[I] < N^N \) for all \(I \).

(a) How long will \texttt{COUNTING-SORT} take?

Solution: \(\Theta(N^N) \) since you have to go through array \(C \) of length \(N^N \). If you wrote \(O(N^N + N) \) it is not technically wrong but it misses the point. In asymptotics we ignore the lower order terms to put things in the right form. Thus we want to write \(O(N^N) \), in this case \(\Theta(N^N) \) since you do indeed need to go through array \(C \).
(b) How long will \textsc{Radix-Sort} take using base N?

\textbf{Solution:} Now C has length N do for each digit this is a linear sort, $\Theta(N)$. However, there are N digits so that the total time is $\Theta(N^2)$.

4. Just For Fun: What is the next term is the sequence

$$4, 14, 23, 34, 42, 50, \ldots$$

\textbf{Solution:} It’s the A Train! Next stop, Columbus Circle.

5. Write the time $T(N)$ (don’t worry about the output!) for the following algorithms in the form $T(N) = \Theta(g(N))$ for a standard $g(N)$. \textit{Assume} (for this problem only!) that addition and multiplication take one time unit.

(a) $X=0$
\hspace{1cm} FOR $I=1$ TO N
\hspace{1.5cm} do FOR $J=1$ TO N
\hspace{2cm} X ++

\textbf{Solution:} Double-loop, time $\Theta(N^2)$.

(b) $I=1$
\hspace{1cm} WHILE $I < N$
\hspace{1.5cm} do $I = 2*I$

\textbf{Solution:} Only $\lg N$ doublings to get to N and each doubling (by our assumption) takes one time unit so total time $\Theta(\lg N)$.

(c) FOR $I=1$ TO N
\hspace{1.5cm} do $J=1$
\hspace{2cm} WHILE $J*J < I$
\hspace{2.5cm} do $J=J+1$

\textbf{Solution:} For each I the subloop takes $O(\sqrt{I})$ as after that $J > I$. So we need look at $\sqrt{1} + \ldots + \sqrt{N}$. This is at most $N\sqrt{N}$ as there are N terms and each is at most \sqrt{N}. As a lower bound cut it off at the middle. (This often works!) We have $\sqrt{N/2} + \ldots + \sqrt{N}$. There are $N/2$ terms here and each is at least $\sqrt{N/2}$ so the total is at least $N\sqrt{N}/(2\sqrt{2})$. In Theta-Land (as your lecturer likes to call it) constants don’t count so the answer is $\Theta(N^{3/2})$.

(d) FOR $I = 1$ to N
\hspace{1cm} $J=I$
WHILE J < N
 do J = 2 * J

Solution: For a given \(I \) the subloop starts at \(I \) and double until reaching \(N \). We double \(t \) times, where \(t \) is the smallest integer \(I2^t \geq N \), so \(t = \lceil \log(N/I) \rceil \). So the total time is

\[
TOTAL = O \left(\sum_{i=1}^{n} \lceil \log(n/i) \rceil \right)
\]

(1)

This is challenging.

Approach One: We “get rid” of the ceiling by noting that the ceiling can only affect each term by 1 and therefore the sum by at most \(n \) and so

\[
TOTAL = O(n) + O \left(\sum_{i=1}^{n} \log(n/i) \right)
\]

(2)

Now there are a variety of approaches. One is via Stirling’s Formula. The object in parentheses is precisely \(\ln(n^n/n!) \) and by Stirling \(n^n/n! \sim e^n(2\pi n)^{-1/2} \). The square root term is inconsequential and \(\log(n^n/e^n) \sim n \log 2 = O(n) \). Thus

\[
TOTAL = O(n) + O(n) = O(n)
\]

(3)

this is a linear time algorithm! Note that the ceiling actually does have an effect on the constants buried in the \(O \) as both parts are linear in \(n \). **Comment:** How did we know that removing the ceilings would work? We didn’t, we tried it and it turned out its effect was not dominant so we were OK. This is part of the art of doing asymptotics!

Approach Two: Similar to the analysis of BUILD-MAX-HEAP we have 1 doubling \(n/2 \) times, 2 doublings \(n/4 \) times \((n/4 < i \leq n/2) \), 3 doublings \(n/8 \) times so the total doublings is \(\sum u2^{-u} \) but that sum, even to infinity, is 2 so the total doublings is \(\sim 2n \).

6. Prof. Ligate decides to do Bucket Sort on \(n \) items with \(n^2 \) buckets while his student Ima Hogg decides to do Bucket Sort on \(n \) items with \(n^{1/2} \) buckets. Assume that the items are indeed uniformly distributed. Assume that Ima’s algorithm for sorting inside a bucket takes time \(O(m^{2}) \) when the bucket has \(m \) items.
(a) Argue that Prof. Ligate has made a poor choice of the number of buckets by looking analyzing the time of Bucket Sort in his case.

Solution: The time will be $O(n^2)$ since one has to pass through the buckets to link them up. Note that even though most of the buckets are empty you don’t know which one’s are empty so you have to check each one.

(b) Argue that Ima has made a poor choice of the number of buckets by looking analyzing the time of Bucket Sort in her case.

Solution: Let’s say each of the $n^{1/2}$ buckets had around $n^{1/2}$ items. (Indeed, with high probability that will be the case.) Then sorting each bucket (under our assumption) takes $O((n^{1/2})^2) = O(n)$ so the total time for bucket sorting would be $O(n^{3/2})$.

(c) Argue that Ima uses roughly the same amount of space as someone using n buckets.

Solution: She didn’t save any space. While the array is only of length $n^{1/2}$ she has all the items in the linked lists in the array so the total space used up by the array is still $\Theta(n)$.

If you take a number and double it and double it again and then double it a few more times, the number gets bigger and bigger and goes higher and higher and only arithmetic can tell you what the number is when you quit doubling.

from *Arithmetic* by Carl Sandburg