
Basic Algorithms, Problem Set 2
Solutions

1. Illustrate the operation of PARTITION(A,1,12) on the array

A = (13, 18, 9, 5, 12, 8, 7, 4, 11, 2, 6, 10)

(You may use either the text’s program or the version given in class,
but please specify which you are using.)
Solution:Using the class version we have p = 1, q = 12 and an auxil-
liary array B of length 12. We initialize left = 1, right = 12. We first
set x = 10, the pivot element. Now for j = 1 to 11 we either put A(j)
as B(left) and increment left or as B(right) and decrement right,
depending on whether A(j) ≤ x or not. Here is what happens near
the start:

j newB left right
1 B[12]=13 1 11
2 B[11]=18 1 10
3 B[1]=9 2 10

etc., after j = 11 we get

B = (9, 5, 8, 7, 4, 2, 6, 8, 11, 12, 18, 13)

and now we have the left and right pointer with value 8 so we take our
pivot value 10 (note that we saved it so it wouldn’t be overwritten!)
and make it B[8], its correct position, giving

B = (9, 5, 8, 7, 4, 2, 6, 10, 11, 12, 18, 13)

We then reset the A vector to the B vector and we return the value
8. In QUICKSORT[1,12] we would now recursively QUICKSORT the first
seven positions and the final four positions.

2. Let L(n), (“L” for lucky) denote the number of comparisons that
quicksort does if each time it is applied the pivot lies in the precise
center of the array. For example, applying quicksort to an array of
length 31, say A(1) · · ·A(31) objects, there would be 30 comparisons
(between A(31) and all the other A(j)) and then A(31) would end up
in the 16th place and there would be two recursive calls to quicksort
on arrays each of size 15. Find the precise value of L(1023). (Hint:



thats one less than 1024!)
Solution:Let L(n) = p(n) + L(ℓ) + L(r).
L(1) = 0.
If n is odd, ℓ = n−1

2
= r, thus

L(n) = p(n) + 2L(
n − 1

2
).

W.l.o.g. If n is even, ℓ = ⌈n−1

2
⌉ and r = ⌊n−1

2
⌋.

p(n) = n− 1

L(1023) = 1022 + 2L(511) = 1022 + 2*3586 = 8194
L(511) = 510 + 2L(255) = 510 + 2*1538 = 3586
L(255) = 254 + 2L(127) = 254 + 2*642 = 1538
L(127) = 126 + 2L(63) = 126 + 2*258 = 642
L(63) = 62 + 2L(31) = 62 + 2*98 = 258
L(31) = 30 + 2L(15) = 30 + 2*34 = 98
L(15) = 14 + 2L(7) = 14 + 2*10 = 34
L(7) = 6 + 2L(3) = 6 + 2*2 = 10
L(3) = 2 + 2L(1) = 2 + 2*0 = 2
L(1) = 0

Note: We have to work backwards to get L(1023), doing L(1), L(3), L(7) · · ·
in that order.

3. Babu is trying to sort a, b, c, d, e with seven comparisons. First he asks
“Is a < b” and the answer is yes. Now he asks “Is a < c?” Argue that
(in worst-case) he will not succeed.
Solution:Suppose (this being worst-case), he gets the answer Yes. At
this stage of the original 120 permutations there are 40 left. (One way
to see that is that a is the smallest of a, b, c and that happens precisely
one-third of the time.) But 40 > 32 = 25. From the Decision Tree
Lower Bound he will need more than 5 further questions.

4. Illustrate the operation of COUNTING-SORT with k = 6 on the array
A = (6, 0, 2, 2, 0, 1, 3, 4, 6, 1, 3).
Solution:We start with C[0 · · · 6] all zeroes. We go through A, in-
crementing C[A[i]], at the end of which C[j] gives the number of j’s
in A, so it is 2, 2, 2, 2, 1, 0, 2. Then from j = 1 to 6 we set C[j] ←



C[j] + C[j − 1] and now C has the cumulative sums 2, 4, 6, 8, 9, 9, 11.
Now we work our way down the array A:
A[11] = 3 and C[2] = 6 so we set B[6] = 2 and reset C[2] = 5.
A[10] = 3 and C[3] = 8 so we set B[5] = 8 and reset C[3] = 7.
A[9] = 1 and C[1] = 4 so we set B[4] = 1 and reset C[1] = 3.
A[8] = 6 and C[6] = 11 so we set B[11] = 6 and reset C[6] = 10.
A[7] = 4 and C[4] = 9 so we set B[9] = 4 and reset C[4] = 8.
A[6] = 3 and C[3] = 7 so we set B[7] = 3 and reset C[3] = 2.
That last one was the clever one. Because C[3] had earlier been decre-
mented we are putting the second three into the appropriate empty
space.
A[5] = 1 and C[1] = 3 so we set B[3] = 1 and reset C[1] = 2.
et cetera. At the end B is 0, 0, 1, 1, 2, 2, 3, 3, 4, 6, the sorted output.

5. You are given a Max-Heap with n entries. Assume all entries are
distinct. Your goal is to find the third largest entry. One way would
be to EXTRACT-MAX twice and then MAXIMUM. How long does this take?
Find a better (by which we always mean faster for n large) way.
Solution:As EXTRACT-MAX takes O(lg n) and MAXIMUM takes O(1) that
method would take 2 · O(lg n) + O(1) = O(lg n) steps. Better: The
third largest is (previous problems!) one of A[1] · · ·A[7]. Sort those
seven in O(1) time and take the third.

6. Assume a program NEARMED[A,p,r] which returns an i such that A[i]
is uniform between the 0.49m and 0.51m positions (m = p− r+1, the
amount of data) when A[p · · · r] is sorted, and that NEARMED takes
constant time K. (As a default assume NEARMED produces the me-
dian when given less than 100 values.) Create a variant V QUICK[A, p, r]
of QUICKSORT that calls on NEARMED to find pivot. Let V T (n)
be the expected time for VQUICK on an array of size n. Give (but
do not attempt to solve!) the recursive equation for V T (n). (Ignore
initial conditions.)
Solution:VQUICK[A,p,r]
IF p < r (*else done*)
i← NEARMED[A, p, r]
IF i 6= r THEN A(i)↔ A(r)
q ← PARTITION [A, p, r]
V QUICK[A, p, q − 1]
V QUICK[A, q + 1, r]



Now the pivot i is averaged among the .02n values so

T (n) = K + n− 1 +
1

.02n

.051n∑

i=.049n

T (i) + T (n− i)

Comment: The extra time K for NEARMED is costly when n is small
but is negligible when n is (very!) large. As the pivot is very close
to the median the solution is quite close to that of “Lucky” L(n) of
problem 2 which is about 70 percent that of standard randomized
QUICKSORT.


