Basic Algorithms, Assignment 13

Solutions

1. For the following pairs L1, Lo of problem classes show that L1 <p Lo.
That is, given a “black box” that will solve any instance of Ly in unit
time, create a polynomial time algorithm that will solve any instance
of Ly in polynomial time.

(a) Let Ly be TRAVELLING-SALESMAN DESIGNATED PATH. The input
here would be a graph G, two designated vertices, a source v1 and
a sink vy, together with a positive integer weight w(e) for each
edge e and an integer B. Yes would be returned iff there was a
Hamiltonian Path (i.e., one goes through all the vertices vy, ..., v,
in some order (starting and ending at the designated vertices) but
does not return from v, back to v;) which had total weight at
most B. L; is TRAVELLING-SALESMAN as described above.
Solution:For each edge e = {x,y} of the graph ask Ly if there
is a Hamiltonian Path from z to y (that is, source z, sink y)
whose length is at most B —w(e). If you ever get a Yes then the
answer to Lj is Yes as you add the edge e to the Hamiltonian
path. But if you always get No then the answer to L; is No
as a Hamiltonian cycle of length < B would have to use some
e = {x,y} and cutting it out would give a Hamiltonian path of
length less that B — w(e) with that source and sink.

(b) Let Ly be CLIQUE. The input here would be a graph G together
with a positive integer B. Yes would be returned iff there was
a clique with at least B vertices. (A set of vertices in a graph
G is a clique if every pair of them are adjacent.) Let L; be
INDEPENDENT-SET. The input here would be a graph G together
with a positive integer B. Yes would be returned iff there was a
independent set with at least B vertices. (A set of vertices in a
graph G is an independent set if no pair of them are adjacent.)
Solution:G has an independent set of size at least B if and only
if G¢ has a clique of size at least B. Here G° is the complement of
G, pairs of vertices being adjacent in G€ iff they are not adjacent
in G. Given G it takes time O(n?) to create G°. Our algorithm
for L1 on G would be to create G¢ and then apply Lo to it, and
that will return the correct answer to the original problem.

2. Suppose that we are doing Dijkstra’s Algorithm on vertex set V' =
{1,...,500} with source vertex s = 1 and at some time we have S =



{1,...,100}. What is the interpretation of 7[v], d[v] for v € S?
Solution:d[v] is the minimal cost of a path from s to v and 7[v] will
be the vertex just before v on that path.

What is the interpretation of w[v], d[v] for v & S7

Solution:d[v] is the minimal cost of a path s,vi,...,v;,v where all
the vy,...,v; € S. 7w[v] will be the vertex just before v in this path,
here v;.

Which v will have 7[v] = NIL at this time.

Solution: Those v for which there is no directed edge from any vertex
in S to v.

For those v what will be d[v]?

Solution:Infinity

3. (Extra from last week!) You may use Agarwal/Kayal/Saxena but, if
so, mark clearly how it is used.

(a) Call a positive integer n XINYU if it has at least one prime divisor
p of the form p = 10k + 7. Show XINYU € NP.
Solution:Oracle gives the value p. Verifier must check that

i. p divided by 10 gives a remainder of 7
ii. p is prime — using AKS
iii. p divides n

(b) (harder!) Call a positive integer n YUCHEN if it has exactly one

prime divisor p of the form p = 10k+7. Show YUCHEN € NP.

Solution:Oracle gives the prime factorization (possibly with rep-
etition) n = py - - - p, with p; of the form 10k + 7. Verifier must
check that

i. pp divided by 10 gives a remainder of 7

ii. All other p; divided by 10 do not give a remainder of 7

iii. All p; are prime — using AKS.

. n=pi-pr
(Note: As all p; > 2 the number of factors r < d, d the number of

digits of n. So if AKS takes O(d°) applying AKS to each factor
takes O(d°t1), still polynomial.)

4. Let G be a DAG on vertices 1,...,n and suppose we are given that
the ordering 1---n is a Topological Sort. Let COUNT[i,j] denote the
number of paths from 7 to j. Let s, a “source vertex” be given. Give
an efficient algorithm to find COUNT [s, j] for all j.



Solution:Lets assume s = 1 (we can ignore the earlier vertices, if any)
and write COUNTY[j| for COUNTI[1,j]. We set COUNT[1] = 1.
The key is that COUNTYL,j] is the sum, over all i < j with 4,j a
directed edge, of COUNTI1,i]. Why? Well, every path from 1 to
7 will have a unique penultimate point ¢ < j and given i there will
be precisely COUNTYi] such paths. One way to implement this is
to make a reverse adjacency list, create for every j a list Adjrev[j]
of those i with a directed edge from ¢ to j. This can be done in time
O(E) by going through the original adjacency lists and when j € Adj[i]
adding i to Adjrev[j]. Then we can implement this sum. The total
time (assuming addition takes unit time) is O(E).



