
Basic Algorithms, Assignment 13
Solutions

1. For the following pairs L1, L2 of problem classes show that L1 ≤P L2.
That is, given a “black box” that will solve any instance of L2 in unit
time, create a polynomial time algorithm that will solve any instance
of L1 in polynomial time.

(a) Let L2 be TRAVELLING-SALESMAN DESIGNATED PATH. The input
here would be a graph G, two designated vertices, a source v1 and
a sink vn, together with a positive integer weight w(e) for each
edge e and an integer B. Yes would be returned iff there was a
Hamiltonian Path (i.e., one goes through all the vertices v1, . . . , vn
in some order (starting and ending at the designated vertices) but
does not return from vn back to v1) which had total weight at
most B. L1 is TRAVELLING-SALESMAN as described above.
Solution:For each edge e = {x, y} of the graph ask L2 if there
is a Hamiltonian Path from x to y (that is, source x, sink y)
whose length is at most B −w(e). If you ever get a Yes then the
answer to L1 is Yes as you add the edge e to the Hamiltonian
path. But if you always get No then the answer to L1 is No
as a Hamiltonian cycle of length ≤ B would have to use some

e = {x, y} and cutting it out would give a Hamiltonian path of
length less that B − w(e) with that source and sink.

(b) Let L2 be CLIQUE. The input here would be a graph G together
with a positive integer B. Yes would be returned iff there was
a clique with at least B vertices. (A set of vertices in a graph
G is a clique if every pair of them are adjacent.) Let L1 be
INDEPENDENT-SET. The input here would be a graph G together
with a positive integer B. Yes would be returned iff there was a
independent set with at least B vertices. (A set of vertices in a
graph G is an independent set if no pair of them are adjacent.)
Solution:G has an independent set of size at least B if and only
if Gc has a clique of size at least B. Here Gc is the complement of
G, pairs of vertices being adjacent in Gc iff they are not adjacent
in G. Given G it takes time O(n2) to create Gc. Our algorithm
for L1 on G would be to create Gc and then apply L2 to it, and
that will return the correct answer to the original problem.

2. Suppose that we are doing Dijkstra’s Algorithm on vertex set V =
{1, . . . , 500} with source vertex s = 1 and at some time we have S =



{1, . . . , 100}. What is the interpretation of π[v], d[v] for v ∈ S?
Solution:d[v] is the minimal cost of a path from s to v and π[v] will
be the vertex just before v on that path.
What is the interpretation of π[v], d[v] for v 6∈ S?
Solution:d[v] is the minimal cost of a path s, v1, . . . , vj , v where all
the v1, . . . , vj ∈ S. π[v] will be the vertex just before v in this path,
here vj.
Which v will have π[v] = NIL at this time.
Solution:Those v for which there is no directed edge from any vertex
in S to v.
For those v what will be d[v]?
Solution:Infinity

3. (Extra from last week!) You may use Agarwal/Kayal/Saxena but, if
so, mark clearly how it is used.

(a) Call a positive integer n XINYU if it has at least one prime divisor
p of the form p = 10k + 7. Show XINY U ∈ NP .
Solution:Oracle gives the value p. Verifier must check that

i. p divided by 10 gives a remainder of 7

ii. p is prime – using AKS

iii. p divides n

(b) (harder!) Call a positive integer n YUCHEN if it has exactly one
prime divisor p of the form p = 10k+7. Show Y UCHEN ∈ NP .
Solution:Oracle gives the prime factorization (possibly with rep-
etition) n = p1 · · · pr with p1 of the form 10k + 7. Verifier must
check that

i. p1 divided by 10 gives a remainder of 7

ii. All other pi divided by 10 do not give a remainder of 7

iii. All pi are prime – using AKS.

iv. n = p1 · · · pr

(Note: As all pi ≥ 2 the number of factors r ≤ d, d the number of
digits of n. So if AKS takes O(dc) applying AKS to each factor
takes O(dc+1), still polynomial.)

4. Let G be a DAG on vertices 1, . . . , n and suppose we are given that
the ordering 1 · · · n is a Topological Sort. Let COUNT[i,j] denote the
number of paths from i to j. Let s, a “source vertex” be given. Give
an efficient algorithm to find COUNT[s,j] for all j.



Solution:Lets assume s = 1 (we can ignore the earlier vertices, if any)
and write COUNT [j] for COUNT [1, j]. We set COUNT [1] = 1.
The key is that COUNT [1, j] is the sum, over all i < j with i, j a
directed edge, of COUNT [1, i]. Why? Well, every path from 1 to
j will have a unique penultimate point i < j and given i there will
be precisely COUNT [i] such paths. One way to implement this is
to make a reverse adjacency list, create for every j a list Adjrev[j]
of those i with a directed edge from i to j. This can be done in time
O(E) by going through the original adjacency lists and when j ∈ Adj[i]
adding i to Adjrev[j]. Then we can implement this sum. The total
time (assuming addition takes unit time) is O(E).


