Basic Algorithms, Assignment 11

Solutions

1. Here is a variant implementation EasyPrim that doesn't use the parent π. With a given set S the data structure will be a minheap Q consisting of all crossing edges $\{x, y\}$ with $k e y[x, y]=w(x, y)$. The initial step, the minheap of all edges $\{s, x\}$ is the same. Now $V-1$ times we EXTRACT-MAX getting a crossing edge $\{x, y\}, x \in S, y \notin S$ of minimal weight. We add edge $\{x, y\}$ to T and y to S. The UPDATE is different. For each $z \in \operatorname{Adj}[y]$ we examine $\{y, z\}$. If $z \in S$ then $\{y, z\}$ is no longer a crossing edge so we delete it (caution: this takes time!) from the minheap. If $z \notin S$ then $\{y, z\}$ has become a crossing edge so we add it to the minheap, using its weight as its key.
Analyze the time for EasyPrim. Show that the total time is $O(E \lg E)$. Solution: The initial step takes $O(V)$ as before. The minheap has at most size E. The EXTRACT-MAX takes $O(\lg E)$ each time, a total of $O(V \lg E)$. Adding or deleting from the minheap takes time $O(\lg E)$. For every edge it can at most be added to the minheap and later deleted from the minheap so the cost for the edge is $O(\lg E)$ which in total gives $O(E \lg E)$. This is the dominant time. [Note that $O(E \lg E)$ and $O(E \lg V)$ are the same as $E \leq V^{2}$ so that in Θ-land Prim and EasyPrim have the same time - but in reality, with the constants, Prim is faster.]
2. Consider Prim's Algorithm for MST on the complete graph with vertex set $\{1, \ldots, n\}$. Assume that edge $\{i, j\}$ has weight $|j-i|^{3}$. Let the root vertex $r=1$. Show the pattern as Prim's Algorithm is applied. Solution: The set S, initially $\{1\}$, will grow to $\{1,2\}, \ldots,\{1,2, \ldots, i\}$, $\ldots,\{1, \ldots, n\}$. When $S=\{1, \ldots, i\}$ the closest point to S will be $i+1$ with $\pi[i+1]=i$ and $\operatorname{key}[i+1]=1$. In particular, Let $n=500$ and consider the situation when the tree created has 211 vertices and π and key have been updated.
(a) What are these 211 vertices and what are the edges. Solution: $1, \ldots, 211$. The edges are $\{1,2\},\{2,3\}, \cdots,\{210,211\}$.
(b) What are $\pi[309]$ and key[309].

Solution: $\pi[309]=211$ (all other of $1, \ldots, 202$ are further) and $k e y[309]=(309-211)^{3}$.
3. Find $d=\operatorname{gcd}(144,89)$ and x, y with $144 x+89 y=1$. [Remark: This is part of a pattern with two consecutive numbers from the Fibonacci
sequence $0,1,1,2,3,5,8,13,21, \ldots]$
Solution:

$$
\begin{gathered}
\operatorname{EUCLID}(144,89)= \\
\operatorname{EUCLID}(89,55)=\operatorname{EUCLID}(55,34)=\operatorname{EUCLID}(34,21)= \\
=\operatorname{EUCLID}(21,13)=\operatorname{EUCLID}(13,8)=\operatorname{EUCLID}(8,5)= \\
=\operatorname{EUCLID}(5,3)=\operatorname{EUCLID}(3,2)=\operatorname{EUCLID}(2,1)= \\
=\operatorname{EUCLID}(1,0)=1
\end{gathered}
$$

with all quotients 1 except the last. For EXTENDED - EUCLID we get a chart like Figure 31.1:

a	b	$\lfloor a / b\rfloor$	d	x	y
144	89	1	1	34	-55
89	55	1	1	-21	34
55	34	1	1	13	-21
34	21	1	1	-8	13
21	13	1	1	5	-8
13	8	1	1	-3	5
8	5	1	1	2	-3
5	3	1	1	-1	2
3	2	1	1	1	-1
2	1	2	1	0	1
1	0	-	1	1	0

so $x=34$ and $y=-55$. (Note that the x 's and y 's form a Fibonacci like pattern as well!)
4. Find $\frac{311}{507}$ in Z_{1000}.

Solution: Here we first find $\operatorname{EUCLID}(1000,507)$:

$$
\begin{gathered}
\operatorname{EUCLID}(1000,507)=\operatorname{EUCLID}(507,493)=\operatorname{EUCLID}(493,14)= \\
=\operatorname{EUCLID}(14,3)=\operatorname{EUCLID}(3,2)=\operatorname{EUCLID}(2,1)= \\
=\operatorname{EUCLID}(1,0)=1
\end{gathered}
$$

For EXTENDED - EUCLID we get a chart like Figure 31.1:

a	b	$\lfloor a / b\rfloor$	d	x	y
1000	507	1	1	181	-357
507	493	1	1	-176	181
493	14	1	35	5	-176
14	3	1	4	-1	5
3	2	1	1	1	-1
2	1	1	2	0	1
1	0	-	1	1	0

so that $1000(181)-357(507)=1$ so in Z_{1000} we have $(-357)(507)=1$ so $\frac{1}{507}=-357=643$. Finally $\frac{311}{507}=311 \cdot 643=199973=973$. So the answer is 973 . (You might prefer to write it as -27 which is the same.) To check: $973 \cdot 507=493311=311$.
5. Solve the system
$x \equiv 34 \bmod 101$
$x \equiv 59 \bmod 103$.
Solution:We write $x=103 y+59$ (we could start with either and this one is a bit easier) so that in Z_{101} we want $103 y+59=34$ or $2 y=-25=76$ and $y=38$. (Usually division is complicated but here it worked out like normal division.) Then $x=103(38)+59=3973$. The general answer is given as $x \equiv 3973 \bmod 10403$ as $10403=103 \cdot 101$.

