Basic Algorithms, Assignment 11 Solutions

1. Here is a variant implementation EasyPrim that doesn't use the parent π . With a given set S the data structure will be a minheap Q consisting of all crossing edges $\{x, y\}$ with key[x, y] = w(x, y). The initial step, the minheap of all edges $\{s, x\}$ is the same. Now V - 1 times we EXTRACT-MAX getting a crossing edge $\{x, y\}, x \in S, y \notin S$ of minimal weight. We add edge $\{x, y\}$ to T and y to S. The UPDATE is different. For each $z \in Adj[y]$ we examine $\{y, z\}$. If $z \in S$ then $\{y, z\}$ is no longer a crossing edge so we delete it (caution: this takes time!) from the minheap. If $z \notin S$ then $\{y, z\}$ has become a crossing edge so we add it to the minheap, using its weight as its key.

Analyze the time for EasyPrim. Show that the total time is $O(E \lg E)$. Solution: The initial step takes O(V) as before. The minheap has at most size E. The EXTRACT-MAX takes $O(\lg E)$ each time, a total of $O(V \lg E)$. Adding or deleting from the minheap takes time $O(\lg E)$. For every edge it can at most be added to the minheap and later deleted from the minheap so the cost for the edge is $O(\lg E)$ which in total gives $O(E \lg E)$. This is the dominant time. [Note that $O(E \lg E)$ and $O(E \lg V)$ are the same as $E \leq V^2$ so that in Θ -land Prim and EasyPrim have the same time – but in reality, with the constants, Prim is faster.]

- Consider Prim's Algorithm for MST on the complete graph with vertex set {1,...,n}. Assume that edge {i, j} has weight |j i|³. Let the root vertex r = 1. Show the pattern as Prim's Algorithm is applied. Solution: The set S, initially {1}, will grow to {1,2},...,{1,2,...,i}, ..., {1,...,n}. When S = {1,...,i} the closest point to S will be i + 1 with π[i + 1] = i and key[i + 1] = 1. In particular, Let n = 500 and consider the situation when the tree created has 211 vertices and π and key have been updated.
 - (a) What are these 211 vertices and what are the edges. Solution:1,...,211. The edges are $\{1,2\}, \{2,3\}, \cdots, \{210,211\}$.
 - (b) What are π[309] and key[309].
 Solution: π[309] = 211 (all other of 1,..., 202 are further) and key[309] = (309 211)³.
- 3. Find $d = \gcd(144, 89)$ and x, y with 144x + 89y = 1. [Remark: This is part of a pattern with two consecutive numbers from the Fibonacci

sequence $0, 1, 1, 2, 3, 5, 8, 13, 21, \ldots$] Solution:

$$\begin{split} \texttt{EUCLID}(144, 89) = \\ \texttt{EUCLID}(89, 55) &= \texttt{EUCLID}(55, 34) = \texttt{EUCLID}(34, 21) = \\ &= \texttt{EUCLID}(21, 13) = \texttt{EUCLID}(13, 8) = \texttt{EUCLID}(8, 5) = \\ &= \texttt{EUCLID}(5, 3) = \texttt{EUCLID}(3, 2) = \texttt{EUCLID}(2, 1) = \\ &= \texttt{EUCLID}(1, 0) = 1 \end{split}$$

with all quotients 1 except the last. For EXTENDED - EUCLID we get a chart like Figure 31.1:

a	b	$\lfloor a/b \rfloor$	d	х	у
144	89	1	1	34	-55
89	55	1	1	-21	34
55	34	1	1	13	-21
34	21	1	1	-8	13
21	13	1	1	5	-8
13	8	1	1	-3	5
8	5	1	1	2	-3
5	3	1	1	-1	2
3	2	1	1	1	-1
2	1	2	1	0	1
1	0	-	1	1	0

so x = 34 and y = -55. (Note that the x's and y's form a Fibonacci like pattern as well!)

4. Find $\frac{311}{507}$ in Z_{1000} .

Solution: Here we first find EUCLID(1000, 507):

$$\begin{split} \texttt{EUCLID}(1000, 507) &= \texttt{EUCLID}(507, 493) = \texttt{EUCLID}(493, 14) = \\ &= \texttt{EUCLID}(14, 3) = \texttt{EUCLID}(3, 2) = \texttt{EUCLID}(2, 1) = \\ &= \texttt{EUCLID}(1, 0) = 1 \end{split}$$

For EXTENDED – EUCLID we get a chart like Figure 31.1:

a	b	$\lfloor a/b \rfloor$	d	x	У
1000	507	1	1	181	-357
507	493	1	1	-176	181
493	14	1	35	5	-176
14	3	1	4	-1	5
3	2	1	1	1	-1
2	1	1	2	0	1
1	0	-	1	1	0

so that 1000(181) - 357(507) = 1 so in Z_{1000} we have (-357)(507) = 1so $\frac{1}{507} = -357 = 643$. Finally $\frac{311}{507} = 311 \cdot 643 = 199973 = 973$. So the answer is 973. (You might prefer to write it as -27 which is the same.) To check: $973 \cdot 507 = 493311 = 311$.

- 5. Solve the system
 - $x \equiv 34 \mod 101$
 - $x \equiv 59 \mod 103.$

Solution: We write x = 103y + 59 (we could start with either and this one is a bit easier) so that in Z_{101} we want 103y + 59 = 34 or 2y = -25 = 76 and y = 38. (Usually division is complicated but here it worked out like normal division.) Then x = 103(38) + 59 = 3973. The general answer is given as $x \equiv 3973 \mod 10403$ as $10403 = 103 \cdot 101$.