Note on Rod Cutting

This is covered in §15.1. Here is Prof. Spencer’s view of it.

We can sell a rod of length \(I \) for \(P[I] \). These values are given to us. (Everything here is integral.)

Now we have a rod of length \(N \). How can we best cut the rod into pieces so as to maximize our revenue?

There are useful heuristics for this but here we give a method, a form of dynamic programming that gives the exact answer and does it in time \(O(N^2) \).

We create an array \(R[S] \) which will be the maximal total revenue we can get starting with a rod of length \(S \). While our goal is to find \(R[N] \) our method is to “work up” to this goal by finding \(R[1], R[2], \ldots \) until we reach \(R[N] \). We initialize with \(R[0] = 0 \). (If you like, set \(R[1] = P[1] \) as well.) So our program will start:

\[
R[0] = 0
\]

FOR \(S = 1 \) to \(N \) (* Now want to find \(R[S] *\)\)

We want (in the guts of the FOR loop) to find \(R[S] \) where we already know \(R[0], R[1], \ldots, R[S-1] \). The key is to think about the first cut of the rod. We don’t know where we should make it, it will be at some \(I \) where \(1 \leq I \leq S \). (\(I = S \) would be selling the entire rod as a single piece.) Suppose we did cut it at \(I \) so we would receive revenue \(P[I] \) for the first piece. The remaining rod now has length \(S - I \). We would now (and this is a feature of dynamic programming) want to cut up that piece so as to get the maximal revenue but we already know that we will get \(R[S - I] \) from that piece. So then our total revenue would be \(P[I] + R[S - I] \). (Note that if we sell the rod of length \(S \) as a single piece we get \(P[S] + R[0] = P[S] \) so this is included.)

Which \(I \) should we choose for the first cut? Try them all! Pick that \(I \) which gives the maximal value of \(P[I] + R[S - I] \). Finding a max takes time \(O(S) \), with a single loop:

\[
\text{MAX} = 0
\]

FOR \(I = 1 \) to \(S \)

IF \(P[I] + R[S - I] \geq \text{MAX} \) THEN \(\text{MAX} \leftarrow P[I] + R[S - I] \)

END FOR

This \(\text{MAX} \) will be our value for \(R[S] \). Here is the whole program. It is a double loop and the time is \(O(N^2) \).
\(R[0] = 0 \)

FOR \(S = 1 \) to \(N \)
 \(MAX = 0 \)
 FOR \(I = 1 \) to \(S \)
 IF \(P[I] + R[S - I] \geq MAX \) THEN \(MAX \leftarrow P[I] + R[S - I] \)
 END FOR
 \(R[S] \leftarrow MAX \)
END FOR
RETURN \(R[N] \)

What if you want to actually find the optimal cut? When we are calculating \(R[S] \) we find that \(I \) which does maximize \(P[I] + R[S - I] \). We do this by having another array \(FIRSTCUT[S] \). We modify the calculation of \(MAX \) by:

\[MAX = 0 \]

FOR \(I = 1 \) to \(S \)
 IF \(P[I] + R[S - I] \geq MAX \) THEN
 \(MAX \leftarrow P[I] + R[S - I] \)
 \(FIRSTCUT[S] = I \)
 END IF
END FOR

In this approach \(FIRSTCUT[S] \) keeps changing but its last value (the one that sticks) is that \(I \) with \(P[I] + R[S - I] = MAX \).

Now to print out the cuts for \(N \) we (\(REM \) denotes the remaining part of the rod):
\(REM = N \)

WHILE \(REM > 0 \)
 PRINT \(FIRSTCUT[REM] \)
 \(REM \leftarrow REM - FIRSTCUT[REM] \)
END WHILE