
Note on Rod Cutting

This is covered in §15.1. Here is Prof. Spencer’s view of it.
We can sell a rod of length I for P [I]. These values are given to us.

(Everything here is integral.)
Now we have a rod of length N . How can we best cut the rod into pieces

so as to maximize our revenue?
There are useful heuristics for this but here we give a method, a form

of dynamic programming that gives the exact answer and does it in time
O(N2).

We create an array R[S] which will be the maximal total revenue we
can get starting with a rod of length S. While our goal is to find R[N ] our
method is to “work up” to this goal by finding R[1], R[2], . . . until we reach
R[N ]. We initialize with R[0] = 0. (If you like, set R[1] = P [1] as well.) So
our program will start:
R[0] = 0
FOR S = 1 to N (* Now want to find R[S] *)

We want (in the guts of the FOR loop) to find R[S] where we already

know R[0], R[1], . . . , R[S − 1]. The key is to think about the first cut of the
rod. We don’t know where we should make it, it will be at some I where
1 ≤ I ≤ S. (I = S would be selling the entire rod as a single piece.) Suppose

we did cut it at I so we would receive revenue P [I] for the first piece. The
remaining rod now has length S− I. We would now (and this is a feature of
dynamic programming) want to cut up that piece so as to get the maximal
revenue but we already know that we will get R[S − I] from that piece. So
then our total revenue would be P [I]+R[S−I]. (Note that if we sell the rod
of length S as a single piece we get P [S] +R[0] = P [S] so this is included.)

Which I should we choose for the first cut? Try them all! Pick that I

which gives the maximal value of P [I]+R[S−1]. Finding a max takes time
O(S), with a single loop:
MAX = 0
FOR I = 1 to S

IF P [I] +R[S − I] ≥MAX THEN MAX ← P [I] +R[S − I]
END FOR

This MAX will be our value for R[S]. Here is the whole program. It is
a double loop and the time is O(N2).



R[0] = 0
FOR S = 1 to N

MAX = 0
FOR I = 1 to S

IF P [I] +R[S − I] ≥MAX THEN MAX ← P [I] +R[S − I]
END FOR
R[S]←MAX

END FOR
RETURN R[N ]

What if you want to actually find the optimal cut? When we are calcu-
lating R[S] we find that I which does maximaize P [I] + R[S − I]. We do
this by having another array FIRSTCUT [S]. We modify the calculation of
MAX by:
MAX = 0
FOR I = 1 to S

IF P [I] +R[S − I] ≥MAX THEN
MAX ← P [I] +R[S − I]
FIRSTCUT [S] = I

END FOR
In this approach FIRSTCUT [S] keeps changing but its last value (the

one that sticks) is that I with P [I] +R[S − I] = MAX.
Now to print out the cuts for N we (REM denotes the remaining part

of the rod):
REM = N

WHILE REM > 0
PRINT FIRSTCUT [REM ]
REM ← REM − FIRSTCUT [REM ]

END WHILE


