
Quicksort Project

The project is to explore Quicksort and some variants. Instead of the
actual time you will explore the number of comparisons (COMP below)
that your program makes.

Start with A[1], . . . , A[n] in random order. To do this start with A[i] = i.
If you have a shuffle routine in your toolbox feel free to use it. Otherwise,
with RAN [j] denoting a random integer from 1 to j: you can use the fol-
lowing:
FOR i = n DOWN TO 2

k = RAND[i]
IF k 6= i *else leave where is*

A[i] ↔ A[k]
ENDIF

ENDFOR
You will start with this random order. With this start you do the regular

QUICKSORT, simply taking the last of an array as the pivot.
Write QUICKSORT (no package, please!). Run it several times for var-

ious n. Take n = 100 and then keep doubling it until, say, you reach a
million. (If its taking too long for large n you can stop sooner.) Let COMP

denote the number of times you compare some A[i] with some A[j]. (e.g.:
with the pivot on an array of size w you will make w − 1 comparisons.)
In your program start COMP = 0 and increment COMP every time you
make a comparison. The output for a run will be the final value of COMP .

The variant: Call thisQUICKSORT−3. When recursiveQUICKSORT [p, r]
has r− p > 2: Take the last three values A[r], A[r− 1], A[r− 2] of the array.
Find their median. (You have to write this – be sure that the comparisons
you make are counted in COMP .) Use this median as the pivot. (Small sav-
ings: You’ve already compared this pivot with the other two so you needn’t
do that again.) Then use recursion. (When r − p ≤ 2 just use standard
QUICKSORT .

What to examine: Compare the results forQUICKSORT andQUICKSORT−

3. QUICKSORT − 3 has the advantage that the pivot is more likely to
be near the middle. It has the disadvantage that finding the pivot is taking
comparisons. Looking at the data discuss which one seems better for which
n and what their asymptotic behavior looks like. (It is probably handy to
look at COMP divided by n lnn when doing this.)

Further variants: QUICKSORT−5,QUICKSORT−7,QUICKSORT−

9,QUICKSORT − 11. With QUICKSORT − (2t + 1) you take the last
2t + 1 elements of the array and find their median and use it as a pivot.



When the number of elements of the array falls to ≤ 2t + 1 then revert to
standard QUICKSORT .

What further to examine: Look at the data for these other variants.
When doing, say QUICKSORT − 11 your pivot is very likely very close to
halfway in the array which is good. But you are spending a lot of compar-
isons finding the median of the 11 which is bad. Does it wind up better or
worse, or does it vary depending on which n you look at? Can you make an
educated guess at the asymptotics of COMP for these variants.

Most of all, have fun – explore – take to heart the words of the founder
of Theoretical Computer Science, Don Knuth:

...pleasure has probably been the main goal all along. But I
hesitate to admit it, because computer scientists want to man-
tain their image as hard-working individuals who deserve high
salaries. Sooner or later society will realise that certain kinds of
hard work are in fact admirable even though they are more fun
than just about anything else.


