Fundamental Algorithms, Assignment 9
Due April 6 8:00 a.m. via Gradescope

The cautious seldom err. – Confucius

1. Consider the undirected graph with vertices 1, 2, 3, 4, 5 and adjacency lists (arrows omitted) 1 : 25, 2 : 1534, 3 : 24, 4 : 253, 5 : 412. Show the d and π values that result from running BFS, using 3 as a source. Nice picture, please!

2. Show the d and π values that result from running BFS on the undirected graph of Figure A, using vertex u as the source.

3. We are given a set V of boxers. Between any two pairs of boxers there may or may not be a rivalry. Assume the rivalries form a graph G which is given by an adjacency list representation, that is, $\text{Adj}[v]$ is a list of the rivals of v. Let n be the number of boxers (or nodes) and r the number of rivalries (or edges). Give a $O(n + r)$ time algorithm that determines whether it is possible to designate some of boxers as GOOD and the others as BAD such that each rivalry is between a GOOD boxer and a BAD boxer. If it is possible to perform such a designation your algorithm should produce it.

Here is the approach: Create a new field $\text{TYPE}[v]$ with the values GOOD and BAD. Assume that the boxers are in a list L so that you can program: For all $v \in L$. The idea will be to apply $\text{BFS}[v]$ – when you hit a new vertex its value will be determined. A cautionary note: $\text{BFS}[v]$ might not hit all the vertices so, just like we had DFS and DFS-VISIT you should have an overall BFS-MASTER (that will run through the list L) and, when appropriate, call $\text{BFS}[v]$.

Note: The cognescenti will recognize that we are determining if a graph is bipartite!

4. Show how DFS works on Figure B. All lists are alphabetical except we put R before Q so it is the first letter. Show the discovery and finishing time for each vertex.

5. Show the ordering of the vertices produced by TOP-SORT when it is run on Figure C, with all lists alphabetical.

1Figures are on the website – not Gradescope – for Assignment 9
6. Let $S(n)$ satisfy initial condition $S(1) = 4$ and recursion $S(n) = S(n/7) + 11$ Assume n is a power of 7. Give a precise formula for $S(n)$.

7. **Not to be Submitted!** If one person is purple on December 10, 2019 and the number of purple people doubles every five days, at what day does the number of purple people reach $7 \cdot 10^9$?

What is night for all beings is the time of waking for the disciplined soul. Bhavagad Gita, II.69