Basic Algorithms, Problem Set 7

Due by 8 a.m. Wednesdy, March 17. Send to Jingshuai: jj2903@nyu.edu.

What you need is that your brain is open. – Paul Erdős

- 1. Determine an LCS of 10010101 and 010110110 using the algorithm studied.
- 2. Write all the parenthesizations of ABCDE. Associate them in a natural way with (setting n = 5) the terms P(i)P(n i), i = 1, 2, 3, 4 given in the recursion for P(n).
- 3. Let x_1, \ldots, x_m be a sequence of distinct real numbers. For $1 \leq i \leq m$ let INC[i] denote the length of the longest increasing subsequence ending with x_i . Let DEC[i] denote the length of the longest decreasing subsequence ending with x_i . Caution: The subsequence must $use\ x_i$. For example, 20, 30, 4, 50, 10. Now INC[5] = 2 because of 4, 10 we do not count 20, 30, 50.
 - (a) Find an efficient method for finding the values INC[i], $1 \le i \le m$. (You should find INC[i] based on the previously found INC[j], $1 \le j < i$. Your algorithm should take time O(i) for each particular i and thus $O(m^2)$ overall.)
 - (b) Let LIS denote the length of the longest increasing subsequence of x_1, \ldots, x_m . Show how to find LIS from the values INC[i]. Your algorithm, starting with the INC[i], should take time O(m). Similarly, let DIS denote the length of the longest decreasing subsequence of x_1, \ldots, x_m . Show how to find DIS from the values DEC[i].
 - (c) Suppose i < j. Prove that it is impossible to have INC[i] = INC[j] and DEC[i] = DEC[j]. (Hint: Show that if $x_i < x_j$ then $INC[j] \ge INC[i] + 1$.)
 - (d) Deduce (assume (3c)) the following celebrated result (called the Monotone Subsequence Theorem) of Paul Erdős and George Szekeres: Let m=ab+1. Then any sequence x_1,\ldots,x_m of distinct real numbers either LIS>a or DIS>b. (Idea: Assume not and look at the pairs (INC[i],DEC[i])). Try it with m=5, a=2, b=2 on sequence 20,30,4,50,10) Paul Erdős was a great twentieth century mathematician, whose work remains highly influential in many areas.

- 4. Find an optimal parenthesization of a matrix-chain product whose sequence of dimensions is 5, 10, 3, 12, 5, 50, 6.
- 5. Some exercises on logarithms:
 - (a) Write $\lg(4^n/\sqrt{n})$ in simplest form. What is its asymptotic value.
 - (b) Which is bigger, 5^{313340} or 7^{271251} ? Give reason. (You can use a calculator but you can't use any numbers bigger than 10^9 .)
 - (c) Simplify $n^2 \lg(n^2)$ and $\lg^2(n^3)$.
 - (d) Solve (for x) the equation $e^{-x^2/2} = \frac{1}{n}$.
 - (e) Write $\log_n 2^n$ and $\log_n n^2$ in simple form.
 - (f) What is the relationship between $\lg n$ and $\log_3 n$?
 - (g) Assume i < n. How many times need i be doubled before it reaches (or exceeds) n?
 - (h) Write $\lg[n^n e^{-n} \sqrt{2\pi n}]$ precisely as a sum in simplest form. What is it asymptotic to as $n \to \infty$? What is interesting about the bracketed expression?

I feel sunk in that long corridor between old values, actions, modes of thought, and those that I seek, that I'm working towards.

letter from Barack Obama at age 21)