Basic Algorithms, Assignment ω

Due by 8 a.m. May 5. Send to Jingshuai: jj2903@nyu.edu.

The universe is not only queerer than we suppose but queerer than we *can* suppose. – J.B.S. Haldane

- 1. Please try both of these but submit only one -- your choice! For the following pairs L_1, L_2 of problem classes show that $L_1 \leq_P L_2$. That is, given a "black box" that will solve any instance of L_2 in unit time, create a polynomial time algorithm that will solve any instance of L_1 in polynomial time.
 - (a) Let L_2 be TRAVELLING-SALESMAN DESIGNATED PATH. The input here would be a graph G, two designated vertices, a source v_1 and a sink v_n , together with a positive integer weight w(e) for each edge e and an integer B. Yes would be returned iff there was a Hamiltonian Path (i.e., one goes through all the vertices v_1, \ldots, v_n in some order (starting and ending at the designated vertices) but does *not* return from v_n back to v_1) which had total weight at most B. L_1 is TRAVELLING-SALESMAN as described in Assignment 12.
 - (b) Let L_2 be CLIQUE. The input here would be a graph G together with a positive integer B. Yes would be returned iff there was a clique with at least B vertices. (A set of vertices in a graph G is a clique if every pair of them are adjacent.) Let L_1 be INDEPENDENT-SET. The input here would be a graph G together with a positive integer B. Yes would be returned iff there was a independent set with at least B vertices. (A set of vertices in a graph G is an independent set if no pair of them are adjacent.)
- 2. Suppose that we are doing Dijkstra's Algorithm on vertex set $V = \{1, \ldots, 500\}$ with source vertex s = 1 and at some time we have $S = \{1, \ldots, 100\}$. What is the interpretation of $\pi[v], d[v]$ for $v \in S$? What is the interpretation of $\pi[v], d[v]$ for $v \notin S$? Which v will have $\pi[v] = NIL$ at this time. For those v what will be d[v]?
- 3. (Extra from last week!) You may use Agarwal/Kayal/Saxena but, if so, mark clearly how it is used.
 - (a) Call a positive integer n XINYU if it has at least one prime divisor p of the form p = 10k + 7. Show $XINYU \in NP$.

- (b) (harder!) Call a positive integer n YUCHEN if it has exactly one prime divisor p of the form p = 10k + 7. Show $YUCHEN \in NP$.
- 4. Let G be a DAG on vertices $1, \ldots, n$ and suppose we are *given* that the ordering $1 \cdots n$ is a Topological Sort. Let COUNT[i,j] denote the number of paths from i to j. Let s, a "source vertex" be given. Give an efficient algorithm to find COUNT[s,j] for all j.

A clever man commits no minor blunders. – Goethe