Basic Algorithms, Assignment 10
Due by 8 a.m. Wednesdy, April 14.
Send to Jingshuai: jj2903@nyu.edu.

I cannot live without people. — Pope Francis

. Suppose we are given the Minimal Spanning Tree T of a graph G.
Now we take an edge {z,y} of G which is not in 7" and reduce its
weight w(x,y) to a new value w. Suppose the path from z to y in
the Minimal Spanning Tree contains an edge whose weight is bigger
than w. Prove that the old Minimal Spanning Tree is no longer the
Minimal Spanning Tree.

. Do NOT submit this problem! Suppose we ran Kruskal’s algo-
rithm on a graph G with n vertices and m edges, no two costs equal.
Assume that the n — 1 edges of minimal cost form a tree T'.

(a) Argue that T' will be the minimal cost tree.

(b) How much time will Kruskal’s Algorithm take. Assume that the
edges are given to you an array in increasing order of weight.
Further, assume the Algorithm stops when it finds the MST. Note
that the total number m of edges is irrelevant as the algorithm
will only look at the first n — 1 of them.

(¢) We define Dumb Kruskal. It is Kruskal without the SIZE func-
tion. For UNTON [u,v] we follow u,v down to their roots x,y as
with regular Kruskal but now, if z # y, we simply reset 7[y] = x.
We have the same assumptions on G as above. How long could
dumb Kruskal take. Describe an example where it takes that
long. (You can imagine that when the edge u,v is given an ad-
versary puts them in the worst possible order to slow down your
algorithm.)

. Consider Kruskal’s Algorithm for MST on a graph with vertex set
{1,...,n}. Assume that the order of the weights of the edges begins
{1,2},{2,3},{3,4},...,{n—1,n}. (Note: When SIZFE[z] = SIZE[y|
make the first value the parent of the second. In particular, set 7[2] =
1, not the other way around.)

(a) Show the pattern as the edges are processed. In particular, let
n = 100 and stop the program when the edge {72, 73} has been
processed. Give the values of SIZE[z| and 7[z] for all vertices x.



(b) Now let n be large and stop the program after {n—1,n} has been
processed. Assume the ordering of the weights of the edges was
given to you, so it took zero time. How long, as an asymptotic
function of n, would this program take. (Reasons, please!)

4. Here is an alternative approach ! to Union-Find for Kruskal’s Algo-
rithm. You are asked to analyze the time. We have n vertices 1---n.
Initially each vertex is in its own component. Assume the edges have
already been ordered by weight. Let E be the number of edges. As-
sume E = 2V (other cases are similar.) Each node is given three
attributes:

(a) LISTY]i] will be a linked (important!) list of vertices, including i

(b) NAME]i] will be the designated vertex of the component con-
taining 1.

(¢) SIZE[i] will be, when NAM E[i| = i, the size of the component

containing ¢. Further, when NAMEJi] = i, LIST[i] will consist
of all the vertices of the component containing .

The initialization is easy:

(a) LISTYIi] =i (the linked list with one item)
(b) NAME[] =i
(¢) SIZEJi] =1

Now we consider an edge x,y. If NAM E[x] = NAM E[y] we reject the
edge (x,y lie in the same component) and do nothing. The interesting
part is when NAM FE[x] # NAME]y] (which occurs V —1 = O(V)
times) so we need to merge. Reset z <+~ NAME|[z], y < NAME]Iy].
(So the new = — same for y — is the designated vertex of the component
which the old x lies in. This is analogous to the “sliding down the

bannister” step but in only takes one step.) Reorder if necessary so
that SIZE[z] < SIZE[y|]. Now

(a) (Rename step) For each z in LIST[x] reset NAME[z] =y (This
will take the time!)

(b) (size step) Set SIZE[y| < SIZE[y|+SIZE|x] (Assume addition
takes time O(1).)

'"From Aho/Hopcroft/Ullman, Data Structures and Algorithms — though original dis-
covery uncertain.



(c) (append step) Append LIST[z] to LIST[y]

Now for the time analysis questions (answers in ©-land, please) :

(a) What is the total time for cases when x,y lie in the same com-

ponent?
(b) What is the total time for the size steps?
(c) What is the total time for the append steps?

(d) Give an upper bound (similar to that in Union-Find) for the
number of times a vertex z will be renamed. (Critically, it is the

smaller component being renamed!!)

(e) What is the total time (using O) for the rename steps?

(f) Putting this all together — what is the total time as O(g(V')) for

a nice function g.

If you look for things that are like the things that you have looked
for before, then, obviously, they’ll connect up. But they’ll only
connect up in an obvious sort of way, which actually isn’t in
terms of writing something new, very productive. So you have
to take heterogeneous materials in order to get your mind to do
something that it hasn’t done before.

W. G. Sebald



