To make no mistakes is not in the power of man; but from their errors and mistakes the wise and good learn wisdom for the future. – Plutarch

FINAL EXAM

Total Score: 155. Do all problems. Problems marked (*) are more difficult but still part of the exam. Send exam to: jj2903@nyu.edu

- 1. (15) In a Binary Search Tree T define desc[v] to be the number of descendents (including v itself) of v.
 - (a) (5) Suppose v has children y, z with desc[y] = 10 and desc[z] = 20. What is desc[v]?
 - (b) (10) (*) Give a recursive program HAOBO[v] that finds desc[w] for all descendents w of v, including v itself. (Idea: Modify In-Order-Tree-Walk) When v = Root[T] your program should take time O(V).
- 2. (20) Suppose in DFS[G] that d[v] = 30 and f[v] = 50.
 - (a) (10) Suppose w is Grey at time 30. What are its possible colors at time 50? Give full argument for your answer!
 - (b) (10) Suppose w is White at time 30. What are its possible colors at time 50? Give full argument for your answer!
- 3. (15) Consider the following program with input M
 - 1. FOR S = 1 TO M
 - 2. TEMP = S
 - 3. WHILE $TEMP \leq M$
 - 4. TEMP = TEMP + TEMP
 - 5. ENDWHILE
 - 6. ENDFOR
 - (a) (5) For a given S, M how many times do we hit step 3?
 - (b) (5) Write as a sum the total number times we hit step 3?
 - (c) (5) (*) Evaluate the above sum as $\Theta(g(N))$ for some nice function g(N) analysis please!
- 4. (5) Which is faster (or are they both the same) when n is large, a $\Theta(n^2)$ algorithm or a $\Theta(n^{3/2} \lg^2 n)$? (Brief reason, please.)

- 5. (15) Consider Kruskal's Algorithm for MST on V = 1000 vertices and E = 5000 edges.
 - (a) (5) Let w be a vertex. How many different values can $\pi[w]$ have during the course of the algorithm?
 - (b) (5) Suppose at some point in the algorithm that x_0, \ldots, x_L are such that $\pi(x_i) = x_{i+1}$ for $0 \le i < L$ and $SIZE[x_L] = 50$. What is the maximal possible value of L?
 - (c) (5) (*) Let v be a vertex. What is the maximal number of possible values of SIZE[v] in the course of the algorithm?
- 6. (20) Short Stuff: Brief answers no arguments needed.
 - (a) (5) Give an exciting result one discussed in this class that was found less than thirty years ago.
 - (b) (5) What is the quickest way (worst case) to sort a million non-negative integers, all less than a trillion?
 - (c) (5) When is the third smallest edge (assume no ties) *not* accepted in Kruskal's algorithm? (A picture will help!)
 - (d) (5) Give an algorithm one discussed in this class that makes use of the heap (max or min) data structure.
- 7. (15) Consider the recursion $T(n) = 8T(n/2) + n^2$ with initial value T(1) = 5. (To avoid fractions, restrict to n a power of two.)
 - (a) (5) Using the Master Theorem find $T(n) = \Theta(g(n))$ for some nice g(n).
 - (b) (5) Setting $S(n) = T(n)/n^3$ give the recursion (including initial value) for S.
 - (c) (5) (*) Show $T(n) \sim cg(n)$, g(n) from the first part, for some explicit constant c.
- 8. (15) Apply the Extended Euclidean Algorithm to find $d = \gcd(15, 24)$ and x, y with 15x + 24y = d. Show all work, the answers alone will not suffice!
- 9. (10) Let GOLDBACH be the set of integers expressible as the sum of two (not necessarily distinct) odd primes. For example, $18 = 11 + 7 \in GOLDBACH$. Show $GOLDBACH \in NP$. (Give clearly the roles of Oracle and Verifier.)

- 10. (15) Consider Prim's Algorithm (for MST) on a connected graph G with V vertices, E edges, and designated source vertex s. Assume that s is joined to all other vertices by an edge. Further assume that for every vertex $x \neq s$, amongst all edges using x the edge $\{s, x\}$ has the smallest weight.
 - (a) (5) Argue that the MST will consist of the V-1 edges $\{s,x\}$, $x \neq s$.
 - (b) (10) (*) Suppose further that G is the complete graph. How long will Prim's Algorithm take under these special assumptions when G is the complete graph i.e., consists of all edges $\{x,y\}$.
- 11. (10) Let G be a directed graph with designated source vertex v. Let $z \in G$, $z \in Adj[v]$, and assume the weight of (v,z) is the smallest (assume no ties) of all the weights of (v,y), $y \in Adj[v]$. Prove (yes, prove, using the algorithm is not a proof!) that the lowest weight path from v to z is given by the edge (v,z). (A good picture will help!)

Do I contradict myself? Very well then I contradict myself. (I am large, I contain multitudes.)
– Walt Whitman