To make no mistakes is not in the power of man; but from their errors and mistakes the wise and good learn wisdom for the future. - Plutarch

FINAL EXAM

Total Score: 155. Do all problems. Problems marked $\left(^{*}\right)$ are more difficult but still part of the exam. Send exam to: jj2903@nyu.edu

1. (15) In a Binary Search Tree T define $\operatorname{desc}[v]$ to be the number of descendents (including v itself) of v.
(a) (5) Suppose v has children y, z with $\operatorname{desc}[y]=10$ and $\operatorname{desc}[z]=$ 20. What is $\operatorname{desc}[v]$?
(b) (10) $\left(^{*}\right)$ Give a recursive program $H A O B O[v]$ that finds $\operatorname{desc}[w]$ for all descendents w of v, including v itself. (Idea: Modify In-Order-Tree-Walk) When $v=\operatorname{Root}[T]$ your program should take time $O(V)$.
2. (20) Suppose in $D F S[G]$ that $d[v]=30$ and $f[v]=50$.
(a) (10) Suppose w is Grey at time 30. What are its possible colors at time 50? Give full argument for your answer!
(b) (10) Suppose w is White at time 30. What are its possible colors at time 50? Give full argument for your answer!
3. (15) Consider the following program with input M
4. FOR $S=1$ TO M
5. $T E M P=S$
6. WHILE TEMP $\leq M$
7. $T E M P=T E M P+T E M P$
8. ENDWHILE
9. ENDFOR
(a) (5) For a given S, M how many times do we hit step 3 ?
(b) (5) Write as a sum the total number times we hit step 3?
(c) (5) $\left(^{*}\right)$ Evaluate the above sum as $\Theta(g(N))$ for some nice function $g(N)$ - analysis please!
10. (5) Which is faster (or are they both the same) when n is large, a $\Theta\left(n^{2}\right)$ algorithm or a $\Theta\left(n^{3 / 2} \lg ^{2} n\right)$? (Brief reason, please.)
11. (15) Consider Kruskal's Algorithm for MST on $V=1000$ vertices and $E=5000$ edges.
(a) (5) Let w be a vertex. How many different values can $\pi[w]$ have during the course of the algorithm?
(b) (5) Suppose at some point in the algorithm that x_{0}, \ldots, x_{L} are such that $\pi\left(x_{i}\right)=x_{i+1}$ for $0 \leq i<L$ and $S I Z E\left[x_{L}\right]=50$. What is the maximal possible value of L ?
(c) $(5)\left(^{*}\right)$ Let v be a vertex. What is the maximal number of possible values of SIZE[v] in the course of the algorithm?
12. (20) Short Stuff: Brief answers - no arguments needed.
(a) (5) Give an exciting result - one discussed in this class - that was found less than thirty years ago.
(b) (5) What is the quickest way (worst case) to sort a million nonnegative integers, all less than a trillion?
(c) (5) When is the third smallest edge (assume no ties) not accepted in Kruskal's algorithm? (A picture will help!)
(d) (5) Give an algorithm - one discussed in this class - that makes use of the heap (max or min) data structure.
13. (15) Consider the recursion $T(n)=8 T(n / 2)+n^{2}$ with initial value $T(1)=5$. (To avoid fractions, restrict to n a power of two.)
(a) (5) Using the Master Theorem find $T(n)=\Theta(g(n))$ for some nice $g(n)$.
(b) (5) Setting $S(n)=T(n) / n^{3}$ give the recursion (including initial value) for S.
(c) (5) $\left.{ }^{*}\right)$ Show $T(n) \sim c g(n), g(n)$ from the first part, for some explicit constant c.
14. (15) Apply the Extended Euclidean Algorithm to find $d=\operatorname{gcd}(15,24)$ and x, y with $15 x+24 y=d$. Show all work, the answers alone will not suffice!
15. (10) Let $G O L D B A C H$ be the set of integers expressible as the sum of two (not necessarily distinct) odd primes. For example, $18=11+7 \epsilon$ $G O L D B A C H$. Show $G O L D B A C H \in N P$. (Give clearly the roles of Oracle and Verifier.)
16. (15) Consider Prim's Algorithm (for MST) on a connected graph G with V vertices, E edges, and designated source vertex s. Assume that s is joined to all other vertices by an edge. Further assume that for every vertex $x \neq s$, amongst all edges using x the edge $\{s, x\}$ has the smallest weight.
(a) (5) Argue that the MST will consist of the $V-1$ edges $\{s, x\}$, $x \neq s$.
(b) (10) $\left(^{*}\right.$) Suppose further that G is the complete graph. How long will Prim's Algorithm take under these special assumptions when G is the complete graph - i.e., consists of all edges $\{x, y\}$.
17. (10) Let G be a directed graph with designated source vertex v. Let $z \in G, z \in \operatorname{Adj}[v]$, and assume the weight of (v, z) is the smallest (assume no ties) of all the weights of $(v, y), y \in \operatorname{Adj}[v]$. Prove (yes, prove, using the algorithm is not a proof!) that the lowest weight path from v to z is given by the edge (v, z). (A good picture will help!)

Do I contradict myself?
Very well then I contradict myself.
(I am large, I contain multitudes.)

- Walt Whitman

