Fast Fourier Transform

1 Overview

This material, in somewhat different form, is in §30.1-2 of the text.

Our goal is to give a rapid algorithm to multiply two binary numbers $\alpha = \sum_i a_i 2^i$, $\beta = \sum_i b_i 2^i$ and output the product $\gamma = \sum_i d_i 2^i$. Recall that we consider numbers represented by their array a[i], b[i], d[i]. Our algorithm will take time $O(n \lg n)$ (our mantra!) where all exponents of 2 (in α, β, γ) are less than n. We shall take n a power of two and write

$$n = 2^t \tag{1}$$

(If, say, the largest exponent is 37 we will take n = 64. This incurs a small loss but the algorithm is considerably more complicated when n is not a power of two.) Sums will be for $0 \le i < n$, though there are likely to be many zeroes near the top.

2 Reduction to Polynomials

We first reduce to polynomial multiplication. Here the input is two polynomials $A(x) = \sum_i a_i x^i$, $B(x) = \sum_i b_i x^i$ and the output is $C(x) = \sum_i c_i x^i$ where C(x) = A(x)B(x). (Similar to binary, the polynomials are represented by the array a[i], b[i], c[i].) Given C(x) we plug in x = 2. So $\alpha = A(2), \beta = B(2)$ and therefore $\gamma = C(2) = \sum c_i 2^i$. We're not quite done as we may, and generally will, have some $c_i \geq 2$. We get to the final product d[i] by a simple CARRY routine:

```
CARRY = 0
FOR i = 0 T0 (n-1)
c[i]=c[i]+CARRY (* add carry *)
CARRY = c[i]/2 (* new carry *)
c[i]=c[i]-2*CARRY (* remainder, zero or one *)
END FOR
```

(We are assuming integer division so, e.g., 7/2 = 3. So when c[i] = 7 we set CARRY = 3 and reset c[i] to 0.) The CARRY routine is a simple FOR loop, taking O(n) times.

3 Complex Roots of Unity

FFT depends critically on complex numbers, in particular on the solutions to the equation $z^n = 1$. We set

$$\epsilon = e^{2\pi i/n} = \cos[2\pi/n] + i\sin[2\pi/n] \tag{2}$$

(If you aren't familiar with the $e^{i\theta}$ notation just use the sin, cos notation.) This point is on the unit circle at angle $2\pi/n$ with the X-axis. The *n* solutions to the equation $z^n = 1$ are then given by

$$z = 1, \epsilon, \epsilon^2, \dots \epsilon^{n-1} \tag{3}$$

Geometrically, these n points are the vertices of a regular n-gon on the unit circle. For n = 4, $\epsilon = i$, the points 1, i, -1, -i form a square.

Background: Complex multiplication is best understood using polar coordinates. Write nonzero z = x + iy in polar coordinates (r, θ) . (Or $z = re^{i\theta}$.) When z_1, z_2 have $(r_1, \theta_1), (r_2, \theta_2)$ their product $z = z_i z_2$ has $(r_1r_2, \theta_1 + \theta_2)$. That is, multiply the *r*-values and add the θ -values. When points are on the unit circle, so r = 1, this is particularly nice. When $z = e^{i\theta} = (1, \theta)$, its *s*-th power is $z^s = e^{i(s\theta)} = (1, s\theta)$. When $z = \epsilon$, given above, the powers ϵ^s form the regular *n*-gon.

A key fact about ϵ we shall use is

$$\sum_{s=0}^{n-1} \epsilon^s = 0 \tag{4}$$

and, more generally, for any 0 < t < n,

$$\sum_{s=0}^{n-1} (\epsilon^t)^s = 0$$
 (5)

We give two arguments for (4), (5 is similar). By the formula for sum of a geometric series

$$\sum_{s=0}^{n-1} \epsilon^s = \frac{\epsilon^n - 1}{\epsilon - 1} = \frac{1 - 1}{\epsilon - 1} = 0$$
(6)

Or, geometrically, the points of the regular n-gon average out to their center, which is 0.

4 Discrete Fourier Transform

Let A(x) be a polynomial of degree less than n. Recall A is given by an array $a[i]: 0 \le i < n$. The Discrete Fourier Transform of A, written $DFT_n[A]$ is the array of values

$$DFT_n[A] = (A(1), A(\epsilon), A(\epsilon^2), \dots, A(\epsilon^{n-1}))$$
(7)

That is, $DFT_n[A]$ is the values A(z) where z ranges over the n n-th roots of unity.

Mathgeeks may compare this (others can ignore this!) with the standard Fourier Transform of a function f(x) given by

$$\hat{f}(\theta) = \int_{x} f(x)e^{ix\theta}dx \tag{8}$$

Now we give the idea of polynomial multiplication. Input is A(x), B(x) and output should be C(x) = A(x)B(x), all polynomials of degree less than n.

1. Find

$$DFT_n[A] = (A(1), A(\epsilon), A(\epsilon^2), \dots, A(\epsilon^{n-1}))$$
(9)

2. Find

$$DFT_n[B] = (B(1), B_n(\epsilon), B(\epsilon^2), \dots, B(\epsilon^{n-1}))$$
(10)

3. Now as $C(\epsilon^s) = A(\epsilon^s)B(\epsilon^s)$ we multiply termwise to get

$$DFT_n[C] = (C(1), C_n(\epsilon), C(\epsilon^2), \dots, C(\epsilon^{n-1}))$$
(11)

4. *n* values of a polynomial of degree at most *n* determine the polynomial (more on that later). Given $DFT_n[C]$, find $C = (c_0, \ldots, c_{n-1})$. This is called finding the *inverse* discrete Fourier Transform.

How long do these steps take. Consider finding $DFT_n[A]$. Calculating each $A[\epsilon^s]$ would involve the sum of n terms so would take time O(n) so it appears that calculating the n different values would take time $O(n^2)$. However, the special plugin values $1, \epsilon, \ldots, \epsilon^{n-1}$ shall allow us to do the calculation in time our mantra $O(n \lg n)$.

Efficient implementation of DFT (e.g., keeping track of the parts A_1, A_2) can be done using ingenious methods of §30.3, which we do not cover. However, even clumsy implementation will yield the $O(n \lg n)$ final result – albeit with a poorer constant.

5 Calculating Discrete Fourier Transform

Our input is $A(x) = \sum_{i=0}^{n-1} a_i x^i$, given as an array $[a[i]: 0 \le i < n]$. The key is to split A(x) into odd and even powers of x. The even powers are written as a function of x^2 . The odd powers are written as x times a function of x^2 . More precisely we set

$$A_1(x) = \sum_{j=0}^{\frac{n}{2}-1} a_{2j} x^j$$
(12)

and

$$A_2(x) = \sum_{j=0}^{\frac{n}{2}-1} a_{2j+1} x^j$$
(13)

so that

$$A(x) = A_1(x^2) + xA_2(x^2)$$
(14)

Example: With n = 4 and $A(x) = 3 + 5x + 2x^2 + 7x^3$ we set $A_1(x) = 3 + 2x$ and $A_2(x) = 5 + 7x$.

Now we come to a special property of the 2^{t} -th roots of unity. As x ranges over the 2^{t} -th roots of unity, x^{2} ranges of the 2^{t-1} -st roots of unity. For example, with t = 2, the squares of 1, i, -1, -i and 1, -1, 1, -1, the square roots of unity. So A_{1} and A_{2} need only be evaluated at the 2^{t-1} -st roots of unity, which is precisely $DFT_{n/2}$. This gives a *recursive* evaluation for $DFT_{n}[A]$:

- 1. Find, recursively $DFT_{n/2}[A_1]$. This gives the values $A_1(1), A_1(\epsilon^2), A_1(\epsilon^4), \dots, A_1(\epsilon^{n-4}), A_1(\epsilon^{n-2}).$
- 2. Find, recursively $DFT_{n/2}[A_2]$. This gives the values $A_2(1), A_2(\epsilon^2), A_2(\epsilon^4), \dots, A_2(\epsilon^{n-4}), A_2(\epsilon^{n-2}).$
- 3. For each $0 \leq s < n$ find $A(\epsilon^s)$ by the formula

$$A(\epsilon^s) = A_1(\epsilon^{2s}) + \epsilon^s A_2(\epsilon^{2s}) \tag{15}$$

Let T(n) be the time to calculate $DFT_n(A)$. Equation (15) takes time O(1) (once the A_1, A_2 have been calculated) for each s for a total time O(n). We have two recursive calls taking time 2T(n/2). This gives the recursion:

$$T(n) = 2T(n/2) + O(n)$$
(16)

This is "just right overhead" with solution our mantra

$$T(n) = O(n \lg n) \tag{17}$$

Going back to the idea in §4, Equations (9,10) each take time $O(n \lg n)$. Equation (11) takes time O(n). This leaves us with the inverse Discrete Fourier Transform.

6 Calculating Inverse Discrete Fourier Transform

We'll take n = 4 as an example. Let $C(x) = a + bx + cx^2 + dx^3$. We know $DFT_4[C]$ – that is, we know C(1), C(i), C(-1), C(-i) – and we want to find a, b, c, d. This gives four equations in the four unknowns a, b, c, d

C(1)	=	а	+	b	+	С	+	d
C(i)	=	а	+	ib	+	-c	+	-id
C(-1)	=	а	+	-b	+	С	+	-d
C(-i)	=	a	+	-ib	+	-c	+	id

Normally n equations in n unknowns takes *lots* of time to solve. But these equations are *very* special. If we add them up the coefficients of b, c, d all cancel! So

$$4a = C(1) + C(i) + C(-1) + C(-i)$$
(18)

How about b? Multiply each equation in order to make the coefficient of b equal to 1 - by 1, -i, -1, i respectively. (In the general pattern below think of this as multiplying by $1, i^{-1}, i^{-2}, i^{-3}$.) This gives

C(1)	=	a	+	b	+	С	+	d
-iC(i)	=	-ia	+	b	+	ic	+	-d
-C(-1)	=	-a	+	b	+	-c	+	d
iC(-i)	=	ia	+	b	+	-ic	+	d

Then add. Now the coefficients of a, c, d all cancel. So

$$4b = C(1) + (-i)C(i) + (-1)C(-1) + iC(-i)$$
(19)

and 4c, 4d are similar.

What is the general pattern? Write $C(x) = \sum_{i=0}^{n-1} c_j x^i$. The *n* equations in the *n* unknowns c_j become:

$$C(\epsilon^s) = \sum_{j=0}^{n-1} c_j \epsilon^{sj} \tag{20}$$

for $0 \le s < n$. Now we want to solve for some c_t . We first multiply the s-th equation by e^{-st} giving

$$\epsilon^{-st}C(\epsilon^s) = \sum_{j=0}^{n-1} c_j \epsilon^{sj} \epsilon^{-st}$$
(21)

Now add equation (20) over $0 \leq s < n$. We have made the coefficient of c_t equal to one in each equation. So when we add we get an nc_t term. What about terms c_u with $u \neq t$. The coefficient of c_u is

$$\sum_{s=0}^{n-1} \epsilon^{su} \epsilon^{-st} = \sum_{s=0}^{n-1} (\epsilon^{(u-t)})^s$$
(22)

From (5), with t replaced by u - t, this geometric sum is zero. That is, the coefficients of c_u all cancel. The only thing left is the nc_t term. That is:

$$nc_t = \sum_{s=0}^{n-1} \epsilon^{-st} C(\epsilon^s) \tag{23}$$

It is helpful here to think of the subscripts t as calculated modulo n so that we can write -t. For example, with n = 16, -5 would be 11. Now replacing t by -t, (23) becomes

$$nc_{-t} = \sum_{s=0}^{n-1} \epsilon^{st} C(\epsilon^s) \tag{24}$$

This is *nearly* the formula for Discrete Fourier Transform. We make a little massaging to get from one to the other. Given $(\alpha_0, \ldots, \alpha_{n-1})$ we wish to find (c_0, \ldots, c_{n-1}) so that $DFT_n(c_0, \ldots, c_{n-1}) = (\alpha_0, \ldots, \alpha_{n-1})$. We do this in three steps:

- 1. Calculate $(d_0, \ldots, d_{n-1}) = DFT_n(\alpha_0, \ldots, \alpha_{n-1})$
- 2. Divide each term by n giving (e_0, \ldots, e_{n-1}) with $e_t = d_t/n$.
- 3. Reverse the *e* array giving (c_0, \ldots, c_{n-1}) with $c_0 = e_0$ and $c_t = e_{n-t}$ for 0 < t < n.

Then (c_0, \ldots, c_{n-1}) is the inverse Discrete Fourier Transform of $(\alpha_0, \ldots, \alpha_n)$.

Division and reversal are both O(n) so the main time is the DFT_n which takes $O(n \lg n)$.

We have completed all the steps for polynomial multiplication. The total time is $O(n \lg n)$. Hence we also have integer multiplication, taking time $O(n \lg n)$.

7 Rumination

The Fourier Transform is a powerful technique in mathematics that has been developed over the centuries. How remarkable that it is applicable to one of the most basic algorithmic challenges – multiplication!