
Fast Fourier Transform

1 Overview

This material, in somewhat different form, is in §30.1-2 of the text.
Our goal is to give a rapid algorithm to multiply two binary numbers

α =
∑

i ai2
i, β =

∑
i bi2

i and output the product γ =
∑

i di2
i. Recall that

we consider numbers represented by their array a[i], b[i], d[i]. Our algorithm
will take time O(n lg n) (our mantra!) where all exponents of 2 (in α, β, γ)
are less than n. We shall take n a power of two and write

n = 2t (1)

(If, say, the largest exponent is 37 we will take n = 64. This incurs a small
loss but the algorithm is considerably more complicated when n is not a
power of two.) Sums will be for 0 ≤ i < n, though there are likely to be
many zeroes near the top.

2 Reduction to Polynomials

We first reduce to polynomial multiplication. Here the input is two polyno-
mials A(x) =

∑
i aix

i, B(x) =
∑

i bix
i and the output is C(x) =

∑
i cix

i

where C(x) = A(x)B(x). (Similar to binary, the polynomials are rep-
resented by the array a[i], b[i], c[i].) Given C(x) we plug in x = 2. So
α = A(2), β = B(2) and therefore γ = C(2) =

∑
ci2

i. We’re not quite done
as we may, and generally will, have some ci ≥ 2. We get to the final product
d[i] by a simple CARRY routine:

CARRY = 0

FOR i = 0 TO (n-1)

c[i]=c[i]+CARRY (* add carry *)

CARRY = c[i]/2 (* new carry *)

c[i]=c[i]-2*CARRY (* remainder, zero or one *)

END FOR

(We are assuming integer division so, e.g., 7/2 = 3. So when c[i] = 7 we
set CARRY = 3 and reset c[i] to 0.) The CARRY routine is a simple FOR
loop, taking O(n) times.



3 Complex Roots of Unity

FFT depends critically on complex numbers, in particular on the solutions
to the equation zn = 1. We set

ǫ = e2πi/n = cos[2π/n] + i sin[2π/n] (2)

(If you aren’t familiar with the eiθ notation just use the sin, cos notation.)
This point is on the unit circle at angle 2π/n with the X-axis. The n
solutions to the equation zn = 1 are then given by

z = 1, ǫ, ǫ2, . . . ǫn−1 (3)

Geometrically, these n points are the vertices of a regular n-gon on the unit
circle. For n = 4, ǫ = i, the points 1, i,−1,−i form a square.

Background: Complex multiplication is best understood using polar
coordinates. Write nonzero z = x + iy in polar coordinates (r, θ). (Or
z = reiθ.) When z1, z2 have (r1, θ1), (r2, θ2) their product z = ziz2 has
(r1r2, θ1 + θ2). That is, multiply the r-values and add the θ-values. When
points are on the unit circle, so r = 1, this is particularly nice. When
z = eiθ = (1, θ), its s-th power is zs = ei(sθ) = (1, sθ). When z = ǫ, given
above, the powers ǫs form the regular n-gon.

A key fact about ǫ we shall use is

n−1∑
s=0

ǫs = 0 (4)

and, more generally, for any 0 < t < n,

n−1∑
s=0

(ǫt)s = 0 (5)

We give two arguments for (4), (5 is similar). By the formula for sum of a
geometric series

n−1∑
s=0

ǫs =
ǫn − 1

ǫ− 1
=

1− 1

ǫ− 1
= 0 (6)

Or, geometrically, the points of the regular n-gon average out to their center,
which is 0.



4 Discrete Fourier Transform

Let A(x) be a polynomial of degree less than n. Recall A is given by an array
a[i] : 0 ≤ i < n. The Discrete Fourier Transform of A, written DFTn[A] is
the array of values

DFTn[A] = (A(1), A(ǫ), A(ǫ2), . . . , A(ǫn−1)) (7)

That is, DFTn[A] is the values A(z) where z ranges over the n n-th roots
of unity.

Mathgeeks may compare this (others can ignore this!) with the standard
Fourier Transform of a function f(x) given by

f̂(θ) =

∫
x
f(x)eixθdx (8)

Now we give the idea of polynomial multiplication. Input is A(x), B(x) and
output should be C(x) = A(x)B(x), all polynomials of degree less than n.

1. Find
DFTn[A] = (A(1), A(ǫ), A(ǫ2), . . . , A(ǫn−1)) (9)

2. Find
DFTn[B] = (B(1), Bn(ǫ), B(ǫ2), . . . , B(ǫn−1)) (10)

3. Now as C(ǫs) = A(ǫs)B(ǫs) we multiply termwise to get

DFTn[C] = (C(1), Cn(ǫ), C(ǫ2), . . . , C(ǫn−1)) (11)

4. n values of a polynomial of degree at most n determine the polynomial
(more on that later). Given DFTn[C], find C = (c0, . . . , cn−1). This
is called finding the inverse discrete Fourier Transform.

How long do these steps take. Consider finding DFTn[A]. Calculating each
A[ǫs] would involve the sum of n terms so would take time O(n) so it appears
that calculating the n different values would take time O(n2). However,

the special plugin values 1, ǫ, . . . , ǫn−1 shall allow us to do the calculation in
time our mantra O(n lg n).

Efficient implementation ofDFT (e.g., keeping track of the parts A1, A2)
can be done using ingenious methods of §30.3, which we do not cover. How-
ever, even clumsy implementation will yield the O(n lg n) final result – albeit
with a poorer constant.



5 Calculating Discrete Fourier Transform

Our input is A(x) =
∑n−1

i=0 aix
i, given as an array [a[i] : 0 ≤ i < n]. The key

is to split A(x) into odd and even powers of x. The even powers are written
as a function of x2. The odd powers are written as x times a function of x2.
More precisely we set

A1(x) =

n

2
−1∑

j=0

a2jx
j (12)

and

A2(x) =

n

2
−1∑

j=0

a2j+1x
j (13)

so that
A(x) = A1(x

2) + xA2(x
2) (14)

Example: With n = 4 and A(x) = 3+5x+2x2+7x3 we set A1(x) = 3+2x
and A2(x) = 5 + 7x.

Now we come to a special property of the 2t-th roots of unity. As x
ranges over the 2t-th roots of unity, x2 ranges of the 2t−1-st roots of unity.
For example, with t = 2, the squares of 1, i,−1,−i and 1,−1, 1,−1, the
square roots of unity. So A1 and A2 need only be evaluated at the 2t−1-st
roots of unity, which is precisely DFTn/2. This gives a recursive evaluation
for DFTn[A]:

1. Find, recursively DFTn/2[A1]. This gives the values
A1(1), A1(ǫ

2), A1(ǫ
4) . . . , A1(ǫ

n−4), A1(ǫ
n−2).

2. Find, recursively DFTn/2[A2]. This gives the values
A2(1), A2(ǫ

2), A2(ǫ
4), . . . , A2(ǫ

n−4), A2(ǫ
n−2).

3. For each 0 ≤ s < n find A(ǫs) by the formula

A(ǫs) = A1(ǫ
2s) + ǫsA2(ǫ

2s) (15)

Let T (n) be the time to calculate DFTn(A). Equation (15) takes time
O(1) (once the A1, A2 have been calculated) for each s for a total time O(n).
We have two recursive calls taking time 2T (n/2). This gives the recursion:

T (n) = 2T (n/2) +O(n) (16)

This is “just right overhead” with solution our mantra



T (n) = O(n lg n) (17)

Going back to the idea in §4, Equations (9,10) each take time O(n lg n).
Equation (11) takes time O(n). This leaves us with the inverse Discrete
Fourier Transform.

6 Calculating Inverse Discrete Fourier Transform

We’ll take n = 4 as an example. Let C(x) = a+ bx+ cx2 + dx3. We know
DFT4[C] – that is, we know C(1), C(i), C(−1), C(−i) – and we want to find
a, b, c, d. This gives four equations in the four unknowns a, b, c, d

C(1) = a + b + c + d

C(i) = a + ib + -c + -id

C(-1) = a + -b + c + -d

C(-i) = a + -ib + -c + id

Normally n equations in n unknowns takes lots of time to solve. But
these equations are very special. If we add them up the coefficients of b, c, d
all cancel! So

4a = C(1) + C(i) + C(−1) + C(−i) (18)

How about b? Multiply each equation in order to make the coefficient of b
equal to 1 – by 1,−i,−1, i respectively. (In the general pattern below think
of this as multiplying by 1, i−1, i−2, i−3.) This gives

C(1) = a + b + c + d

-iC(i) = -ia + b + ic + -d

-C(-1) = -a + b + -c + d

iC(-i) = ia + b + -ic + d

Then add. Now the coefficients of a, c, d all cancel. So

4b = C(1) + (−i)C(i) + (−1)C(−1) + iC(−i) (19)

and 4c, 4d are similar.
What is the general pattern? Write C(x) =

∑n−1
i=0 cjx

i. The n equations
in the n unknowns cj become:

C(ǫs) =
n−1∑
j=0

cjǫ
sj (20)



for 0 ≤ s < n. Now we want to solve for some ct. We first multiply the s-th
equation by ǫ−st giving

ǫ−stC(ǫs) =
n−1∑
j=0

cjǫ
sjǫ−st (21)

Now add equation (20) over 0 ≤ s < n. We have made the coefficient of ct
equal to one in each equation. So when we add we get an nct term. What
about terms cu with u 6= t. The coefficient of cu is

n−1∑
s=0

ǫsuǫ−st =
n−1∑
s=0

(ǫ(u−t))s (22)

From (5), with t replaced by u− t, this geometric sum is zero. That is, the
coefficients of cu all cancel. The only thing left is the nct term. That is:

nct =
n−1∑
s=0

ǫ−stC(ǫs) (23)

It is helpful here to think of the subscripts t as calculated modulo n so that
we can write −t. For example, with n = 16, −5 would be 11. Now replacing
t by −t, (23) becomes

nc
−t =

n−1∑
s=0

ǫstC(ǫs) (24)

This is nearly the formula for Discrete Fourier Transform. We make a little
massaging to get from one to the other. Given (α0, . . . , αn−1) we wish to
find (c0, . . . , cn−1) so that DFTn(c0, . . . , cn−1) = (α0, . . . , αn−1). We do this
in three steps:

1. Calculate (d0, . . . , dn−1) = DFTn(α0, . . . , αn−1)

2. Divide each term by n giving (e0, . . . , en−1) with et = dt/n.

3. Reverse the e array giving (c0, . . . , cn−1) with c0 = e0 and ct = en−t

for 0 < t < n.

Then (c0, . . . , cn−1) is the inverse Discrete Fourier Transform of (α0, . . . , αn).
Division and reversal are both O(n) so the main time is the DFTn which

takes O(n lg n).
We have completed all the steps for polynomial multiplication. The

total time is O(n lg n). Hence we also have integer multiplication, taking
time O(n lg n).



7 Rumination

The Fourier Transform is a powerful technique in mathematics that has been
developed over the centuries. How remarkable that it is applicable to one of
the most basic algorithmic challenges – multiplication!


