Fast Fourier Transform

1 Overview

This material, in somewhat different form, is in $\S 30.1-2$ of the text.
Our goal is to give a rapid algorithm to multiply two binary numbers $\alpha=\sum_{i} a_{i} 2^{i}, \beta=\sum_{i} b_{i} 2^{i}$ and output the product $\gamma=\sum_{i} d_{i} 2^{i}$. Recall that we consider numbers represented by their array $a[i], b[i], d[i]$. Our algorithm will take time $O(n \lg n)$ (our mantra!) where all exponents of 2 (in α, β, γ) are less than n. We shall take n a power of two and write

$$
\begin{equation*}
n=2^{t} \tag{1}
\end{equation*}
$$

(If, say, the largest exponent is 37 we will take $n=64$. This incurs a small loss but the algorithm is considerably more complicated when n is not a power of two.) Sums will be for $0 \leq i<n$, though there are likely to be many zeroes near the top.

2 Reduction to Polynomials

We first reduce to polynomial multiplication. Here the input is two polynomials $A(x)=\sum_{i} a_{i} x^{i}, B(x)=\sum_{i} b_{i} x^{i}$ and the output is $C(x)=\sum_{i} c_{i} x^{i}$ where $C(x)=A(x) B(x)$. (Similar to binary, the polynomials are represented by the array $a[i], b[i], c[i]$.) Given $C(x)$ we plug in $x=2$. So $\alpha=A(2), \beta=B(2)$ and therefore $\gamma=C(2)=\sum c_{i} 2^{i}$. We're not quite done as we may, and generally will, have some $c_{i} \geq 2$. We get to the final product $d[i]$ by a simple CARRY routine:

```
CARRY = 0
FOR i = 0 TO (n-1)
    c[i]=c[i]+CARRY (* add carry *)
    CARRY = c[i]/2 (* new carry *)
    c[i]=c[i]-2*CARRY (* remainder, zero or one *)
END FOR
```

(We are assuming integer division so, e.g., $7 / 2=3$. So when $c[i]=7$ we set $C A R R Y=3$ and reset $c[i]$ to 0 .) The CARRY routine is a simple FOR loop, taking $O(n)$ times.

3 Complex Roots of Unity

FFT depends critically on complex numbers, in particular on the solutions to the equation $z^{n}=1$. We set

$$
\begin{equation*}
\epsilon=e^{2 \pi i / n}=\cos [2 \pi / n]+i \sin [2 \pi / n] \tag{2}
\end{equation*}
$$

(If you aren't familiar with the $e^{i \theta}$ notation just use the sin, cos notation.) This point is on the unit circle at angle $2 \pi / n$ with the X-axis. The n solutions to the equation $z^{n}=1$ are then given by

$$
\begin{equation*}
z=1, \epsilon, \epsilon^{2}, \ldots \epsilon^{n-1} \tag{3}
\end{equation*}
$$

Geometrically, these n points are the vertices of a regular n-gon on the unit circle. For $n=4, \epsilon=i$, the points $1, i,-1,-i$ form a square.

Background: Complex multiplication is best understood using polar coordinates. Write nonzero $z=x+i y$ in polar coordinates (r, θ). (Or $z=r e^{i \theta}$.) When z_{1}, z_{2} have $\left(r_{1}, \theta_{1}\right),\left(r_{2}, \theta_{2}\right)$ their product $z=z_{i} z_{2}$ has $\left(r_{1} r_{2}, \theta_{1}+\theta_{2}\right)$. That is, multiply the r-values and add the θ-values. When points are on the unit circle, so $r=1$, this is particularly nice. When $z=e^{i \theta}=(1, \theta)$, its s-th power is $z^{s}=e^{i(s \theta)}=(1, s \theta)$. When $z=\epsilon$, given above, the powers ϵ^{s} form the regular n-gon.

A key fact about ϵ we shall use is

$$
\begin{equation*}
\sum_{s=0}^{n-1} \epsilon^{s}=0 \tag{4}
\end{equation*}
$$

and, more generally, for any $0<t<n$,

$$
\begin{equation*}
\sum_{s=0}^{n-1}\left(\epsilon^{t}\right)^{s}=0 \tag{5}
\end{equation*}
$$

We give two arguments for (4), (5 is similar). By the formula for sum of a geometric series

$$
\begin{equation*}
\sum_{s=0}^{n-1} \epsilon^{s}=\frac{\epsilon^{n}-1}{\epsilon-1}=\frac{1-1}{\epsilon-1}=0 \tag{6}
\end{equation*}
$$

Or, geometrically, the points of the regular n-gon average out to their center, which is 0 .

4 Discrete Fourier Transform

Let $A(x)$ be a polynomial of degree less than n. Recall A is given by an array $a[i]: 0 \leq i<n$. The Discrete Fourier Transform of A, written $D F T_{n}[A]$ is the array of values

$$
\begin{equation*}
D F T_{n}[A]=\left(A(1), A(\epsilon), A\left(\epsilon^{2}\right), \ldots, A\left(\epsilon^{n-1}\right)\right) \tag{7}
\end{equation*}
$$

That is, $D F T_{n}[A]$ is the values $A(z)$ where z ranges over the $n n$-th roots of unity.

Mathgeeks may compare this (others can ignore this!) with the standard Fourier Transform of a function $f(x)$ given by

$$
\begin{equation*}
\hat{f}(\theta)=\int_{x} f(x) e^{i x \theta} d x \tag{8}
\end{equation*}
$$

Now we give the idea of polynomial multiplication. Input is $A(x), B(x)$ and output should be $C(x)=A(x) B(x)$, all polynomials of degree less than n.

1. Find

$$
\begin{equation*}
D F T_{n}[A]=\left(A(1), A(\epsilon), A\left(\epsilon^{2}\right), \ldots, A\left(\epsilon^{n-1}\right)\right) \tag{9}
\end{equation*}
$$

2. Find

$$
\begin{equation*}
D F T_{n}[B]=\left(B(1), B_{n}(\epsilon), B\left(\epsilon^{2}\right), \ldots, B\left(\epsilon^{n-1}\right)\right) \tag{10}
\end{equation*}
$$

3. Now as $C\left(\epsilon^{s}\right)=A\left(\epsilon^{s}\right) B\left(\epsilon^{s}\right)$ we multiply termwise to get

$$
\begin{equation*}
D F T_{n}[C]=\left(C(1), C_{n}(\epsilon), C\left(\epsilon^{2}\right), \ldots, C\left(\epsilon^{n-1}\right)\right) \tag{11}
\end{equation*}
$$

4. n values of a polynomial of degree at most n determine the polynomial (more on that later). Given $D F T_{n}[C]$, find $C=\left(c_{0}, \ldots, c_{n-1}\right)$. This is called finding the inverse discrete Fourier Transform.

How long do these steps take. Consider finding $\operatorname{DFT}_{n}[A]$. Calculating each $A\left[\epsilon^{s}\right]$ would involve the sum of n terms so would take time $O(n)$ so it appears that calculating the n different values would take time $O\left(n^{2}\right)$. However, the special plugin values $1, \epsilon, \ldots, \epsilon^{n-1}$ shall allow us to do the calculation in time our mantra $O(n \lg n)$.

Efficient implementation of DFT (e.g., keeping track of the parts A_{1}, A_{2}) can be done using ingenious methods of $\S 30.3$, which we do not cover. However, even clumsy implementation will yield the $O(n \lg n)$ final result - albeit with a poorer constant.

5 Calculating Discrete Fourier Transform

Our input is $A(x)=\sum_{i=0}^{n-1} a_{i} x^{i}$, given as an array $[a[i]: 0 \leq i<n]$. The key is to split $A(x)$ into odd and even powers of x. The even powers are written as a function of x^{2}. The odd powers are written as x times a function of x^{2}. More precisely we set

$$
\begin{equation*}
A_{1}(x)=\sum_{j=0}^{\frac{n}{2}-1} a_{2 j} x^{j} \tag{12}
\end{equation*}
$$

and

$$
\begin{equation*}
A_{2}(x)=\sum_{j=0}^{\frac{n}{2}-1} a_{2 j+1} x^{j} \tag{13}
\end{equation*}
$$

so that

$$
\begin{equation*}
A(x)=A_{1}\left(x^{2}\right)+x A_{2}\left(x^{2}\right) \tag{14}
\end{equation*}
$$

Example: With $n=4$ and $A(x)=3+5 x+2 x^{2}+7 x^{3}$ we set $A_{1}(x)=3+2 x$ and $A_{2}(x)=5+7 x$.

Now we come to a special property of the 2^{t}-th roots of unity. As x ranges over the 2^{t}-th roots of unity, x^{2} ranges of the 2^{t-1}-st roots of unity. For example, with $t=2$, the squares of $1, i,-1,-i$ and $1,-1,1,-1$, the square roots of unity. So A_{1} and A_{2} need only be evaluated at the 2^{t-1}-st roots of unity, which is precisely $D F T_{n / 2}$. This gives a recursive evaluation for $D F T_{n}[A]$:

1. Find, recursively $D F T_{n / 2}\left[A_{1}\right]$. This gives the values

$$
A_{1}(1), A_{1}\left(\epsilon^{2}\right), A_{1}\left(\epsilon^{4}\right) \ldots, A_{1}\left(\epsilon^{n-4}\right), A_{1}\left(\epsilon^{n-2}\right) .
$$

2. Find, recursively $D F T_{n / 2}\left[A_{2}\right]$. This gives the values

$$
A_{2}(1), A_{2}\left(\epsilon^{2}\right), A_{2}\left(\epsilon^{4}\right), \ldots, A_{2}\left(\epsilon^{n-4}\right), A_{2}\left(\epsilon^{n-2}\right) .
$$

3. For each $0 \leq s<n$ find $A\left(\epsilon^{s}\right)$ by the formula

$$
\begin{equation*}
A\left(\epsilon^{s}\right)=A_{1}\left(\epsilon^{2 s}\right)+\epsilon^{s} A_{2}\left(\epsilon^{2 s}\right) \tag{15}
\end{equation*}
$$

Let $T(n)$ be the time to calculate $D F T_{n}(A)$. Equation (15) takes time $O(1)$ (once the A_{1}, A_{2} have been calculated) for each s for a total time $O(n)$. We have two recursive calls taking time $2 T(n / 2)$. This gives the recursion:

$$
\begin{equation*}
T(n)=2 T(n / 2)+O(n) \tag{16}
\end{equation*}
$$

This is "just right overhead" with solution our mantra

$$
\begin{equation*}
T(n)=O(n \lg n) \tag{17}
\end{equation*}
$$

Going back to the idea in $\S 4$, Equations $(9,10)$ each take time $O(n \lg n)$. Equation (11) takes time $O(n)$. This leaves us with the inverse Discrete Fourier Transform.

6 Calculating Inverse Discrete Fourier Transform

We'll take $n=4$ as an example. Let $C(x)=a+b x+c x^{2}+d x^{3}$. We know $D F T_{4}[C]$ - that is, we know $C(1), C(i), C(-1), C(-i)$ - and we want to find a, b, c, d. This gives four equations in the four unknowns a, b, c, d

$$
\begin{aligned}
& C(1)=a+b+c+d \\
& C(i)=a+i b+-c+-i d \\
& C(-1)=a+-b+c+-d \\
& C(-i)=a+-i b+-c+i d
\end{aligned}
$$

Normally n equations in n unknowns takes lots of time to solve. But these equations are very special. If we add them up the coefficients of b, c, d all cancel! So

$$
\begin{equation*}
4 a=C(1)+C(i)+C(-1)+C(-i) \tag{18}
\end{equation*}
$$

How about b ? Multiply each equation in order to make the coefficient of b equal to $1-$ by $1,-i,-1, i$ respectively. (In the general pattern below think of this as multiplying by $1, i^{-1}, i^{-2}, i^{-3}$.) This gives

$$
\begin{aligned}
C(1) & =a+b+c+i \\
-i C(i) & =-i a+b+i c+c \\
-C(-1) & =-a+b+i \\
i C(-i) & =i a+b+-i c+d
\end{aligned}
$$

Then add. Now the coefficients of a, c, d all cancel. So

$$
\begin{equation*}
4 b=C(1)+(-i) C(i)+(-1) C(-1)+i C(-i) \tag{19}
\end{equation*}
$$

and $4 c, 4 d$ are similar.
What is the general pattern? Write $C(x)=\sum_{i=0}^{n-1} c_{j} x^{i}$. The n equations in the n unknowns c_{j} become:

$$
\begin{equation*}
C\left(\epsilon^{s}\right)=\sum_{j=0}^{n-1} c_{j} \epsilon^{s j} \tag{20}
\end{equation*}
$$

for $0 \leq s<n$. Now we want to solve for some c_{t}. We first multiply the s-th equation by $\epsilon^{-s t}$ giving

$$
\begin{equation*}
\epsilon^{-s t} C\left(\epsilon^{s}\right)=\sum_{j=0}^{n-1} c_{j} \epsilon^{s j} \epsilon^{-s t} \tag{21}
\end{equation*}
$$

Now add equation (20) over $0 \leq s<n$. We have made the coefficient of c_{t} equal to one in each equation. So when we add we get an $n c_{t}$ term. What about terms c_{u} with $u \neq t$. The coefficient of c_{u} is

$$
\begin{equation*}
\sum_{s=0}^{n-1} \epsilon^{s u} \epsilon^{-s t}=\sum_{s=0}^{n-1}\left(\epsilon^{(u-t)}\right)^{s} \tag{22}
\end{equation*}
$$

From (5), with t replaced by $u-t$, this geometric sum is zero. That is, the coefficients of c_{u} all cancel. The only thing left is the $n c_{t}$ term. That is:

$$
\begin{equation*}
n c_{t}=\sum_{s=0}^{n-1} \epsilon^{-s t} C\left(\epsilon^{s}\right) \tag{23}
\end{equation*}
$$

It is helpful here to think of the subscripts t as calculated modulo n so that we can write $-t$. For example, with $n=16,-5$ would be 11 . Now replacing t by $-t$, (23) becomes

$$
\begin{equation*}
n c_{-t}=\sum_{s=0}^{n-1} \epsilon^{s t} C\left(\epsilon^{s}\right) \tag{24}
\end{equation*}
$$

This is nearly the formula for Discrete Fourier Transform. We make a little massaging to get from one to the other. Given $\left(\alpha_{0}, \ldots, \alpha_{n-1}\right)$ we wish to find $\left(c_{0}, \ldots, c_{n-1}\right)$ so that $\operatorname{DFT}_{n}\left(c_{0}, \ldots, c_{n-1}\right)=\left(\alpha_{0}, \ldots, \alpha_{n-1}\right)$. We do this in three steps:

1. Calculate $\left(d_{0}, \ldots, d_{n-1}\right)=D F T_{n}\left(\alpha_{0}, \ldots, \alpha_{n-1}\right)$
2. Divide each term by n giving $\left(e_{0}, \ldots, e_{n-1}\right)$ with $e_{t}=d_{t} / n$.
3. Reverse the e array giving $\left(c_{0}, \ldots, c_{n-1}\right)$ with $c_{0}=e_{0}$ and $c_{t}=e_{n-t}$ for $0<t<n$.

Then $\left(c_{0}, \ldots, c_{n-1}\right)$ is the inverse Discrete Fourier Transform of $\left(\alpha_{0}, \ldots, \alpha_{n}\right)$.
Division and reversal are both $O(n)$ so the main time is the $D F T_{n}$ which takes $O(n \lg n)$.

We have completed all the steps for polynomial multiplication. The total time is $O(n \lg n)$. Hence we also have integer multiplication, taking time $O(n \lg n)$.

7 Rumination

The Fourier Transform is a powerful technique in mathematics that has been developed over the centuries. How remarkable that it is applicable to one of the most basic algorithmic challenges - multiplication!

