900: Ultra Convergence/2
Harvey Friedman
hmflogic at gmail.com
Sun Oct 3 12:35:42 EDT 2021
The statements in 898: Ultra Convergence/1 correspond to PRA. Here we
extend these to statements that correspond to PA.
THEOREM 1. For every bounded infinite sequence of reals, x[1],x[2],..,
there are primes p1 < ... < pk+1 such that |x[p2p3...pk] -
x[p3p4...pk+1]| < 2^-p1.
THEOREM 2. In Theorem 1, the p's can be chosen below a fixed integer
depending only on the sup of the x's and k.
THEOREM 3. For a sequence x[1],...,x[n] of reals, n sufficiently large
relative to its diameter and k, there are primes p1 < ... < pk+1 such
that |x[p2p3...pk] - x[p3p4...pk+1]| < 2^-p1.
THEOREM 4. Theorems 1-3 are provably equivalent to 1-Con(PA) over
RCA_0. Theorem 3 is provably equivalent to 1-Con(PA) over EFA. The >>
eventually dominates all provably recursive functions of PA.
In particular Theorem 3 is a Pi02 sentence independent of PA.
##########################################
My website is at https://u.osu.edu/friedman.8/ and my youtube site is at
https://www.youtube.com/channel/UCdRdeExwKiWndBl4YOxBTEQ
This is the 900th in a series of self contained numbered
postings to FOM covering a wide range of topics in f.o.m. The list of
previous numbered postings #1-799 can be found at
http://u.osu.edu/friedman.8/foundational-adventures/fom-email-list/
800: Beyond Perfectly Natural/6 4/3/18 8:37PM
801: Big Foundational Issues/1 4/4/18 12:15AM
802: Systematic f.o.m./1 4/4/18 1:06AM
803: Perfectly Natural/7 4/11/18 1:02AM
804: Beyond Perfectly Natural/8 4/12/18 11:23PM
805: Beyond Perfectly Natural/9 4/20/18 10:47PM
806: Beyond Perfectly Natural/10 4/22/18 9:06PM
807: Beyond Perfectly Natural/11 4/29/18 9:19PM
808: Big Foundational Issues/2 5/1/18 12:24AM
809: Goedel's Second Reworked/1 5/20/18 3:47PM
810: Goedel's Second Reworked/2 5/23/18 10:59AM
811: Big Foundational Issues/3 5/23/18 10:06PM
812: Goedel's Second Reworked/3 5/24/18 9:57AM
813: Beyond Perfectly Natural/12 05/29/18 6:22AM
814: Beyond Perfectly Natural/13 6/3/18 2:05PM
815: Beyond Perfectly Natural/14 6/5/18 9:41PM
816: Beyond Perfectly Natural/15 6/8/18 1:20AM
817: Beyond Perfectly Natural/16 Jun 13 01:08:40
818: Beyond Perfectly Natural/17 6/13/18 4:16PM
819: Sugared ZFC Formalization/1 6/13/18 6:42PM
820: Sugared ZFC Formalization/2 6/14/18 6:45PM
821: Beyond Perfectly Natural/18 6/17/18 1:11AM
822: Tangible Incompleteness/1 7/14/18 10:56PM
823: Tangible Incompleteness/2 7/17/18 10:54PM
824: Tangible Incompleteness/3 7/18/18 11:13PM
825: Tangible Incompleteness/4 7/20/18 12:37AM
826: Tangible Incompleteness/5 7/26/18 11:37PM
827: Tangible Incompleteness Restarted/1 9/23/19 11:19PM
828: Tangible Incompleteness Restarted/2 9/23/19 11:19PM
829: Tangible Incompleteness Restarted/3 9/23/19 11:20PM
830: Tangible Incompleteness Restarted/4 9/26/19 1:17 PM
831: Tangible Incompleteness Restarted/5 9/29/19 2:54AM
832: Tangible Incompleteness Restarted/6 10/2/19 1:15PM
833: Tangible Incompleteness Restarted/7 10/5/19 2:34PM
834: Tangible Incompleteness Restarted/8 10/10/19 5:02PM
835: Tangible Incompleteness Restarted/9 10/13/19 4:50AM
836: Tangible Incompleteness Restarted/10 10/14/19 12:34PM
837: Tangible Incompleteness Restarted/11 10/18/20 02:58AM
838: New Tangible Incompleteness/1 1/11/20 1:04PM
839: New Tangible Incompleteness/2 1/13/20 1:10 PM
840: New Tangible Incompleteness/3 1/14/20 4:50PM
841: New Tangible Incompleteness/4 1/15/20 1:58PM
842: Gromov's "most powerful language" and set theory 2/8/20 2:53AM
843: Brand New Tangible Incompleteness/1 3/22/20 10:50PM
844: Brand New Tangible Incompleteness/2 3/24/20 12:37AM
845: Brand New Tangible Incompleteness/3 3/28/20 7:25AM
846: Brand New Tangible Incompleteness/4 4/1/20 12:32 AM
847: Brand New Tangible Incompleteness/5 4/9/20 1 34AM
848. Set Equation Theory/1 4/15 11:45PM
849. Set Equation Theory/2 4/16/20 4:50PM
850: Set Equation Theory/3 4/26/20 12:06AM
851: Product Inequality Theory/1 4/29/20 12:08AM
852: Order Theoretic Maximality/1 4/30/20 7:17PM
853: Embedded Maximality (revisited)/1 5/3/20 10:19PM
854: Lower R Invariant Maximal Sets/1: 5/14/20 11:32PM
855: Lower Equivalent and Stable Maximal Sets/1 5/17/20 4:25PM
856: Finite Increasing reducers/1 6/18/20 4 17PM :
857: Finite Increasing reducers/2 6/16/20 6:30PM
858: Mathematical Representations of Ordinals/1 6/18/20 3:30AM
859. Incompleteness by Effectivization/1 6/19/20 1132PM :
860: Unary Regressive Growth/1 8/120 9:50PM
861: Simplified Axioms for Class Theory 9/16/20 9:17PM
862: Symmetric Semigroups 2/2/21 9:11 PM
863: Structural Mapping Theory/1 2/4/21 11:36PM
864: Structural Mapping Theory/2 2/7/21 1:07AM
865: Structural Mapping Theory/3 2/10/21 11:57PM
866: Structural Mapping Theory/4 2/13/21 12:47AM
867: Structural Mapping Theory/5 2/14/21 11:27PM
868: Structural Mapping Theory/6 2/15/21 9:45PM
869: Structural Proof Theory/1 2/24/21 12:10AM
870: Structural Proof Theory/2 2/28/21 1:18AM
871: Structural Proof Theory/3 2/28/21 9:27PM
872: Structural Proof Theory/4 2/28/21 10:38PM
873: Structural Proof Theory/5 3/1/21 12:58PM
874: Structural Proof Theory/6 3/1/21 6:52PM
875: Structural Proof Theory/7 3/2/21 4:07AM
876: Structural Proof Theory/8 3/2/21 7:27AM
877: Structural Proof Theory/9 3/3/21 7:46PM
878: Structural Proof Theory/10 3/3/21 8:53PM
879: Structural Proof Theory/11 3/4/21 4:22AM
880: Tangible Updates/1 4/15/21 1:46AM
881: Some Logical Thresholds 4/29/21 11:49PM
882: Logical Strength Comparability 5/8/21 5:49PM
883: Tangible Incompleteness Lecture Plans 5/16/21 1:29:44
884: Low Strength Zoo/1 5/16/21 1:34:
885: Effective Forms 5/16/21 1:47AM
886: Concerning Natural/1 5/16/21 2:00AM
887: Updated Adventures 9/9/21 9:47AM 2021
888: New(?) kinds of questions 9/9/21 12:32PM
889: Generating r.e. sets 9/12/21 3:38PM
890: Update on Tangible Incompleteness 9/18/21 9:50AM :
891: Remarks on Reverse Mathematics/1 9/21/21 12:50AM :
892: Remarks on Reverse Mathematics/2 9/21/21 8:37AM :
893: Remarks on Reverse Mathematics/3 9/23/21 10:04PM
894: Update on Tangible Incompleteness/2 9/25/21 2:51AM
895: Provably Recursive Functions and Sigma02 9/27/21 1:21 AM
896: (R,<,0,1,+,-,x,Z) 9/27/21 4:52AM
897: Remarks on Reverse Mathematics/4 10/1/21 1:13AM
898: Ultra Convergence/1
899: Remarks on Reverse Mathematics/5
Harvey Friedman
More information about the FOM
mailing list