[FOM] 677:Embedded Maximality and Pi01 Incompleteness/2
Harvey Friedman
hmflogic at gmail.com
Tue May 17 19:50:37 EDT 2016
SO HERE IS WHERE WE ARE NOW.
1. I prefer as the lead statement, the version in
http://www.cs.nyu.edu/pipermail/fom/2016-May/019802.html But for some
audiences, particularly graph theorists, the previous versions in
http://www.cs.nyu.edu/pipermail/fom/2016-May/019792.html might be
preferable. So these previous ones will always be presented as
alternative formulations.
2. In the lead statement, we put a nice equivalence relation which we
call SIMILARITY on the subsets of Q^k|<=n. It says that the subsets of
cardinality <=2 from the two sets, are the same up to order
isomorphism. For each k, there are only finitely many equivalence
classes. The lead statement says that: in each equivalence class of
subsets of Q^k|<=n under similarity, some maximal element is partially
embedded by the function p if p < 0; p+1 if p = 0,...,n-1. This is
implicitly Pi01 via Goedel's Completeness Theorem, and is provably
equivalent to Con(SRP) over WKL_0.
3. In the previous statements, we use order invariant subsets of
Q^k|<=n, maximal squares, and the same self embedding condition. Also
the graph theoretic formulation uses order invariant graphs on
Q^k|<=n, maximal cliques, and the same self embedding condition. The
formulation in 2 is more direct. But both need to be mentioned.
In this posting I want to focus on the explicitly Pi01 statements
provably equivalent to Con(SRP) over EFA. I like the present
statements a lot better than what I did in
http://www.cs.nyu.edu/pipermail/fom/2016-May/019802.html.
DEFINITION. [t] = {1,...,t}. A,B containedin Q^k are 3-similar if and
only if they have the same <= 3 element subsets up to order
isomorphism. In the family of sets K, S is maximal over X if and only
if S in K has no proper superset in K intersect POW(S union X).
Partial self embeddings have been defined previously.
FINITE EMBEDDED MAXIMALITY. FEM. In every equivalence class of subsets
of [(8k)!!k]^k under 3-similarity, some S, S intersect E^k are
respectively maximal over E^k, (8k)!!N^k, and partially self embedded
by the function m if m in [(8k)!!-1]; m+(8k)!! if m in (8k)!![k-1].
Obviously, FEM is in explicitly Pi01 form.
THEOREM. FEM is provably equivalent to Con(SRP) over EFA.
***********************************************
My website is at https://u.osu.edu/friedman.8/ and my youtube site is at
https://www.youtube.com/channel/UCdRdeExwKiWndBl4YOxBTEQ
This is the 677th in a series of self contained numbered
postings to FOM covering a wide range of topics in f.o.m. The list of
previous numbered postings #1-599 can be found at the FOM posting
http://www.cs.nyu.edu/pipermail/fom/2015-August/018887.html
600: Removing Deep Pathology 1 8/15/15 10:37PM
601: Finite Emulation Theory 1/perfect? 8/22/15 1:17AM
602: Removing Deep Pathology 2 8/23/15 6:35PM
603: Removing Deep Pathology 3 8/25/15 10:24AM
604: Finite Emulation Theory 2 8/26/15 2:54PM
605: Integer and Real Functions 8/27/15 1:50PM
606: Simple Theory of Types 8/29/15 6:30PM
607: Hindman's Theorem 8/30/15 3:58PM
608: Integer and Real Functions 2 9/1/15 6:40AM
609. Finite Continuation Theory 17 9/315 1:17PM
610: Function Continuation Theory 1 9/4/15 3:40PM
611: Function Emulation/Continuation Theory 2 9/8/15 12:58AM
612: Binary Operation Emulation and Continuation 1 9/7/15 4:35PM
613: Optimal Function Theory 1 9/13/15 11:30AM
614: Adventures in Formalization 1 9/14/15 1:43PM
615: Adventures in Formalization 2 9/14/15 1:44PM
616: Adventures in Formalization 3 9/14/15 1:45PM
617: Removing Connectives 1 9/115/15 7:47AM
618: Adventures in Formalization 4 9/15/15 3:07PM
619: Nonstandardism 1 9/17/15 9:57AM
620: Nonstandardism 2 9/18/15 2:12AM
621: Adventures in Formalization 5 9/18/15 12:54PM
622: Adventures in Formalization 6 9/29/15 3:33AM
623: Optimal Function Theory 2 9/22/15 12:02AM
624: Optimal Function Theory 3 9/22/15 11:18AM
625: Optimal Function Theory 4 9/23/15 10:16PM
626: Optimal Function Theory 5 9/2515 10:26PM
627: Optimal Function Theory 6 9/29/15 2:21AM
628: Optimal Function Theory 7 10/2/15 6:23PM
629: Boolean Algebra/Simplicity 10/3/15 9:41AM
630: Optimal Function Theory 8 10/3/15 6PM
631: Order Theoretic Optimization 1 10/1215 12:16AM
632: Rigorous Formalization of Mathematics 1 10/13/15 8:12PM
633: Constrained Function Theory 1 10/18/15 1AM
634: Fixed Point Minimization 1 10/20/15 11:47PM
635: Fixed Point Minimization 2 10/21/15 11:52PM
636: Fixed Point Minimization 3 10/22/15 5:49PM
637: Progress in Pi01 Incompleteness 1 10/25/15 8:45PM
638: Rigorous Formalization of Mathematics 2 10/25/15 10:47PM
639: Progress in Pi01 Incompleteness 2 10/27/15 10:38PM
640: Progress in Pi01 Incompleteness 3 10/30/15 2:30PM
641: Progress in Pi01 Incompleteness 4 10/31/15 8:12PM
642: Rigorous Formalization of Mathematics 3
643: Constrained Subsets of N, #1 11/3/15 11:57PM
644: Fixed Point Selectors 1 11/16/15 8:38AM
645: Fixed Point Minimizers #1 11/22/15 7:46PM
646: Philosophy of Incompleteness 1 Nov 24 17:19:46 EST 2015
647: General Incompleteness almost everywhere 1 11/30/15 6:52PM
648: Necessary Irrelevance 1 12/21/15 4:01AM
649: Necessary Irrelevance 2 12/21/15 8:53PM
650: Necessary Irrelevance 3 12/24/15 2:42AM
651: Pi01 Incompleteness Update 2/2/16 7:58AM
652: Pi01 Incompleteness Update/2 2/7/16 10:06PM
653: Pi01 Incompleteness/SRP,HUGE 2/8/16 3:20PM
654: Theory Inspired by Automated Proving 1 2/11/16 2:55AM
655: Pi01 Incompleteness/SRP,HUGE/2 2/12/16 11:40PM
656: Pi01 Incompleteness/SRP,HUGE/3 2/13/16 1:21PM
657: Definitional Complexity Theory 1 2/15/16 12:39AM
658: Definitional Complexity Theory 2 2/15/16 5:28AM
659: Pi01 Incompleteness/SRP,HUGE/4 2/22/16 4:26PM
660: Pi01 Incompleteness/SRP,HUGE/5 2/22/16 11:57PM
661: Pi01 Incompleteness/SRP,HUGE/6 2/24/16 1:12PM
662: Pi01 Incompleteness/SRP,HUGE/7 2/25/16 1:04AM
663: Pi01 Incompleteness/SRP,HUGE/8 2/25/16 3:59PM
664: Unsolvability in Number Theory 3/1/16 8:04AM
665: Pi01 Incompleteness/SRP,HUGE/9 3/1/16 9:07PM
666: Pi01 Incompleteness/SRP,HUGE/10 13/18/16 10:43AM
667: Pi01 Incompleteness/SRP,HUGE/11 3/24/16 9:56PM
668: Pi01 Incompleteness/SRP,HUGE/12 4/7/16 6:33PM
669: Pi01 Incompleteness/SRP,HUGE/13 4/17/16 2:51PM
670: Pi01 Incompleteness/SRP,HUGE/14 4/28/16 1:40AM
671: Pi01 Incompleteness/SRP,HUGE/15 4/30/16 12:03AM
672: Refuting the Continuum Hypothesis? 5/1/16 1:11AM
673: Pi01 Incompleteness/SRP,HUGE/16 5/1/16 11:27PM
674: Refuting the Continuum Hypothesis?/2 5/4/16 2:36AM
675: Embedded Maximality and Pi01 Incompleteness/1 5/7/16 12:45AM
676: Refuting the Continuum Hypothesis?/3 5/10/16 3:30AM
Harvey Friedman
More information about the FOM
mailing list