[FOM] 586: Finite Continuation Theory 5
Harvey Friedman
hmflogic at gmail.com
Tue Jun 30 13:32:28 EDT 2015
Let's try again, as there are problems with Proposition 1 in the previous
[1] http://www.cs.nyu.edu/pipermail/fom/2015-June/018800.html
which does include useful background information.
FINITE CONTINUATION THEORY
DEFINITION 1. A k-system is an (A,<,R), where (A,<) is a finite linear
ordering and R containedin A^k. A k-continuation of (A,<,R) is
k-system (A',<',R') such that
i. A containedin A', < containedin <', R containedin R'.
ii. Every element of R'^k is order equivalent to some element of R^k.
Note that in ii we are also using order equivalence between k^2-tuples
via concatenation of both length k lists of k-tuples.
PROPOSITION 1. Every k-system (A,<,R) has a k-continuation (A',<',R')
and c_0 <' ... <' c_n = max(A') such that
i. (Maximality). Every (x,y,c_0,...,c_n), x in R'^k, y in A'k\R', is
order equivalent to some (x',y',c_0,...,c_n), x' in R'^k, (A',<',R'
union {y'}) not k-continuing (A,<,R).
ii. (Symmetry). max(x) <' c_i implies ( (x,c_i,...,c_n-1) is in R' if
and only if (x,c_i+1,...,c_n) is in R'.
NOTE: Full blown maximality is
Every y in A'^k\R' has (A',<',R' union {y}) not continuing (A,<,R).
We can obvious impose this, but then we cannot impose Symmetry.
An obvious weakening is
Every y in A^k\R' is order equivalent to some y', (A',<',R' union
{y'}) not k-continuing (A,<,R).
which is the weakening of our ii where we delete x,x',c_0,...,c_n.
We have the stronger
Every (y,c_0,...,c_n), y in A^k\R', is order equivalent to some
(y'c_0,...,c_n), (A',<',R' union {y'}) not k-continuing (A,<,R).
which is the weakening of our ii where we delete x,x'.
Finally, we strengthen further and arrive at our ii.
We can't use these weaker forms of ii to get independence from ZFC.
Proposition 1 is explicitly Pi02. There is an a priori double
exponential upper bound on the size of the continuation relative to k
and |A|, yielding an explicitly Pi01 form.
THEOREM 2. Propositions 1 is provably equivalent to Con(SRP) over WKL_0.
************************************************************
My website is at https://u.osu.edu/friedman.8/ and my youtube site is at
https://www.youtube.com/channel/UCdRdeExwKiWndBl4YOxBTEQ
This is the 586th in a series of self contained numbered
postings to FOM covering a wide range of topics in f.o.m. The list of
previous numbered postings #1-527 can be found at the FOM posting
http://www.cs.nyu.edu/pipermail/fom/2014-August/018092.html
528: More Perfect Pi01 8/16/14 5:19AM
529: Yet more Perfect Pi01 8/18/14 5:50AM
530: Friendlier Perfect Pi01
531: General Theory/Perfect Pi01 8/22/14 5:16PM
532: More General Theory/Perfect Pi01 8/23/14 7:32AM
533: Progress - General Theory/Perfect Pi01 8/25/14 1:17AM
534: Perfect Explicitly Pi01 8/27/14 10:40AM
535: Updated Perfect Explicitly Pi01 8/30/14 2:39PM
536: Pi01 Progress 9/1/14 11:31AM
537: Pi01/Flat Pics/Testing 9/6/14 12:49AM
538: Progress Pi01 9/6/14 11:31PM
539: Absolute Perfect Naturalness 9/7/14 9:00PM
540: SRM/Comparability 9/8/14 12:03AM
541: Master Templates 9/9/14 12:41AM
542: Templates/LC shadow 9/10/14 12:44AM
543: New Explicitly Pi01 9/10/14 11:17PM
544: Initial Maximality/HUGE 9/12/14 8:07PM
545: Set Theoretic Consistency/SRM/SRP 9/14/14 10:06PM
546: New Pi01/solving CH 9/26/14 12:05AM
547: Conservative Growth - Triples 9/29/14 11:34PM
548: New Explicitly Pi01 10/4/14 8:45PM
549: Conservative Growth - beyond triples 10/6/14 1:31AM
550: Foundational Methodology 1/Maximality 10/17/14 5:43AM
551: Foundational Methodology 2/Maximality 10/19/14 3:06AM
552: Foundational Methodology 3/Maximality 10/21/14 9:59AM
553: Foundational Methodology 4/Maximality 10/21/14 11:57AM
554: Foundational Methodology 5/Maximality 10/26/14 3:17AM
555: Foundational Methodology 6/Maximality 10/29/14 12:32PM
556: Flat Foundations 1 10/29/14 4:07PM
557: New Pi01 10/30/14 2:05PM
558: New Pi01/more 10/31/14 10:01PM
559: Foundational Methodology 7/Maximality 11/214 10:35PM
560: New Pi01/better 11/314 7:45PM
561: New Pi01/HUGE 11/5/14 3:34PM
562: Perfectly Natural Review #1 11/19/14 7:40PM
563: Perfectly Natural Review #2 11/22/14 4:56PM
564: Perfectly Natural Review #3 11/24/14 1:19AM
565: Perfectly Natural Review #4 12/25/14 6:29PM
566: Bridge/Chess/Ultrafinitism 12/25/14 10:46AM
567: Counting Equivalence Classes 1/2/15 10:38AM
568: Counting Equivalence Classes #2 1/5/15 5:06AM
569: Finite Integer Sums and Incompleteness 1/515 8:04PM
570: Philosophy of Incompleteness 1 1/8/15 2:58AM
571: Philosophy of Incompleteness 2 1/8/15 11:30AM
572: Philosophy of Incompleteness 3 1/12/15 6:29PM
573: Philosophy of Incompleteness 4 1/17/15 1:44PM
574: Characterization Theory 1 1/17/15 1:44AM
575: Finite Games and Incompleteness 1/23/15 10:42AM
576: Game Correction/Simplicity Theory 1/27/15 10:39 AM
577: New Pi01 Incompleteness 3/7/15 2:54PM
578: Provably Falsifiable Propositions 3/7/15 2:54PM
579: Impossible Counting 5/26/15 8:58PM
580: Goedel's Second Revisited 5/29/15 5:52 AM
581: Impossible Counting/more 6/2/15 5:55AM
582: Link+Continuation Theory 1 6/21/15 5:38PM
583: Continuation Theory 2 6/23/15 12:01PM
584: Finite Continuation Theory 3 6/26/15 7:51PM
585: Finite Continuation Theory 4 Mon Jun 29 23:05:42 EDT 2015
Harvey Friedman
More information about the FOM
mailing list