[FOM] A simplification of Structure Theory.
Patrik Eklund
peklund at cs.umu.se
Mon Dec 21 01:29:19 EST 2015
Would just like to draw your attention not to confuse 'structure theory'
in that sense with what was coined by Werner Gähler around 1980
concerning "A topological approach to structure theory" (Math Nachr 100
(1981), 93-144).
It's a categorical approach, and now decades later we have used monads,
and composition of monads, for describing the benefit of having formal
constructions of signatures, terms
(http://www.sciencedirect.com/science/article/pii/S0165011413000997,
http://www.sciencedirect.com/science/article/pii/S0165011415003152) and
sentences in extensions related to Burstall-Goguen's (institutions) and
Meseguer's (entailment system) approaches to logic.
Our new way to handle type constructors is fundamental in these
respects, e.g., for the foundations of lambda-calculus.
Patrik
More information about the FOM
mailing list