[FOM] Arithmetic Axiom Systems for annotations

pax0 at seznam.cz pax0 at seznam.cz
Fri May 24 15:28:35 EDT 2013


ad (1)

PFA seems to stand for
polynomial function arithmetic.See this
http://books.google.cz/books?id=L_VrNkSKTjEC&pg=PA142&lpg=PA142&dq=%22
polynomial+function+arithmetic%22+PFA+harvey+friedman&source=bl&ots=ExlFa5
bEPb&sig=fSObfTy-TTslGL5gp9DYDqXvDP0&hl=en&sa=X&ei=dLOfUZ2UHbCS7Aa6koHQAQ&
redir_esc=y#v=onepage&q=%22polynomial%20function%20arithmetic%22%20PFA%20
harvey%20friedman&f=false

Jan Pax

"

ad (1) PFA in this context cannot mean "proper forcing axiom"  since it is 
supposed to denote a weaker system than (2). It must mean something like 
"Peano functional arithmetic": the system that removes induction from PA 
WITHOUT adding exponentiation




ad (22) & (23) the name of a single system, Delta-superscript-1-subscript-1-
dash-CA, has been divided into two pieces; the answer to question 2 is 
"nothing by itself, it is part of a longer name"

there are many similar pairs below, and questions 3, 4, 5 are all to be 
answered the same way






On May 15, 2013, at 10:09 AM, zhangyinsheng wrote:

" 
Dear Sir.,


The following list of Arithmetic Axiom Systems is proposed by FOM without 
annotations. I tried to give some annotations yet 9 QUESTIONS left for your 
answers (and if any annotation wrong you are welcome to correct it)!

 



 Godel Hierarchy
(Arithmetic Axiom Systems,whose consistensy is stronger in top-down)

(1) PFA:Proper Forcing Axiom.  
(2) EFA: Elementary Functional Arithmetic,which removes induction from PA,so
exponentiation
must be added as "Ax (x ^ y' )=x ^y multi x".[1]
(3) SEFA:Superexponential Function Arithmetic.  
(4) PRA:Primitive Recursive Arithmetic. 
(5) RCA_0:Recursive Comprehension Axiom,subscript "0" indicates restrict 
induction[2] 
"AxEy phi(x,y) implies Ef Ax phi(x,phi(x))".[3]
(6) I sigma _2: Induction of sigma _2, sub "2" indicates one occurance of E-
A in a Skolem prenex form of a formulas.
(7) I sigma _3.
(8) PA:Peano Arithmetic.  
(9) ACA _0:Arithmetical Comprehension Axiom,the subscript 0 indicates that 
it includes only
       a restricted portion of the full second-order induction scheme. [2,
pp.6-9]
ACA=KL_0+ACA
KL_0: Koenig Lemma. [3, pp.114]
(10) ACA _0 + (An,X)(TJ(n,X)):ACA_ 0 + "for all n,X, the n-th Turing jump of
X exists".     Turing jump TJ(X)is complete recuisively enumaerable set 
relative to X.
    Turing jump TJ(n,X)is recuisively defined by TJ(0,X)=X,TJ(n+1,X)=TJ(TJ
(n,X)).[2,pp.6-9]
(11) ACA:Arithmetical Comprehension Axiom.
(12) RCA _0 + TJ(omega): Omega is the set of natural numbers.
(13) ACA _0 + TJ(omega).  
(14) ACA + TJ(omega).  
(15) ACA _ 0 + (Ax)(TJ(omega,x)).  
(16) ACA _ 0 + {(alpha,x)(TJ(alpha,x)):alpha < omega ^omega }.  
(17) ACA _ 0 + {(alpha<omega^omega )(Ax) (TJ(alpha,x))}.  
(18) RCA _ 0 + TJ(omega ^omega ).  
(19) ACA _ 0 + TJ(omega ^omega ).  
(20) ACA _ 0 + {(Ax)(TJ(omega ^omega,x))}.  
(21) ACA _0 + {(Ax)(TJ(alpha,x)):alpha < OE_0}. (QUESTION 1: What does "OE _
0" mean?)
(22) Delta _ 1:Bounded Arithmetics that comprehension scheme consists of the
formulas of the form An(phi(n) double-direction implies psi(n)) implies EX 
An(n?X double-direction 
implies phi(n))),where phi(n) is the form of An phi(n) and psi(n) is of En 
phi (n) [2,pp.25]
(23) Sub 1-CA:  (QUESTION 2: What does "sub 1" mean ?)
(24) RCA _ 0 + TJ(OE _0 ).  
(25) ACA _ 0 + TJ(OE _0 ).  
(26) ACA + TJ(OE _ 0 ).  
(27) ACA _0 + (Ax)(TJ(OE_0 ,x)).  
(28) {ATI(alpha):alpha < Gamma _0 }:Gamma _0 is the smallest impredicative  
ordinal.(Bill Tait in FOM)
(29) ATR_0.Arithmetical transfinite recursion,"sub 0" indicates restricted 
induction.
(30) ATI( < gamma _0 ).   
(31) ATR:Arithmetical Transfinite Recursion. 
(32) Pi _ 1.  
(33) sub-2-TI_0 : (QUESTION 3:What do "sub 2" and "sub 0" mean ? ) 
(32) Pi _1. 
(34) sub 2-TI.  
(35) TI: Transfinite Induction
(36) ID _2 : 
ID_1: theory of inductive definitions (first level). This has the same 
strength as the Kleene-Vesley system FIM. 
This is what Wim Veldman used for his proof of the Kruskal theorem. ID2, ID
3, etc.: 
All of these count as predicative in type theory.(Bas in FOM)
(37) ID _< omega.
(32) Pi _1. 
(38)sub 1-CA _0: 
(32) Pi _1.
(39) sub 1-CA
(32) Pi _1.
(40)sub 1-CA+TI 
(32) Pi _1.
(41) ) sub 1-TR sub 0 : (QUESTION 4:What is _1-TR_0 ?) 
(32) Pi _1.
(42) sub 1-TR.  
(32) Pi_1.
(43) sub 2-CA_0. 
(32) Pi_1.
(44) sub 2-CA+TI.    
(45) Z_ 2: Second-Order Arithmetic.
(46) Z _3 (QUESTION 5:What does "_ 3" mean ?) 
(47) Type Theory.  
(48) Weak Zermelo.  
(49) ZC:Zermelo+Choice Axiom
(50) ZC + (A alpha < omega _ 1)(V(alpha)) :omega _ 1 is the first 
uncountable ordinal.  alpha is any ordinals.[5. pp.5]  
V is the set-theoretic universe which is viewed as the cumulative hierarchy,
open ended and under-determined by the set-theoritic axioms,and inviting 
further postulations based on reflection and generalization. [6.pp.XVII]
(51) KP(#): Kripke Platek set theory.The theory KP is an elementary first 
order theory in the vocabulary {epsilon}.
It is a weakening of ZF set theory where the power set axiom is removed, and
the seperation and collection axiom acheme are restricted to "delta _ 0" 
formulas.
The "delta _ 0" formulas are the mmbers of the smallest class of formulas 
that contains the atomic formulas in the vocabulary {epsilon} and is closed 
under finite conjunction and
disjunction,bound quantifiers (Ex epsilon u) and (Ax epsilon u),and 
negation.[7]
(QUESTION 6:What does the Sharp symbol mean ?)  
(52) ZFC: Zermelo–Fraenkel +Choice Axiom. 
(53) ZFC + strongly inaccesible.  
(54) ZFC + strongly Mahlo:there exists an Mahlo cardinal.  
(55) ZFC + {strongly n-Mahlo: n < omega }:there exists an n-Mahlo cardinal,n
< omega.  
(56) ZFC + (An < omega )(strongly n-Mahlo).  
(57) ZFC + (weakly compact).  
(58) ZFC + (indescribable). 
(59) ZFC + (subtle):ZFC + "there exists a subtle cardinal."   
(60) ZFC + (almost ineffable):ZFC + "there exists an almost ineffable 
cardinal".   
(61) ZFC + (ineffable).
(62) ZFC + {n-subtle: n < omega}
(63) ZFC + (An < omega)(n-subtle). 
(64) ZFC + k emptyset omega :(QUESTION 7:What does  "k emptyset omega" mean 
?)  
(65) ZFC + (A alpha < omega_1)(k emptyset alpha ).  
(66) ZFC + 0 # ."ZFC + 0 sharp "is a subset of omega satisfying Gaifman 
Theorem [8,pp.99]  
(67) ZFC + (Ax pi omega)(x #):ZFC + "for all x containing omega, x sharp 
exists."(QUESTION 8:What does # mean ?)  
(68) ZFC + k emptyset omega _1.(Question 8:What does "+ k emptyset omega_1" 
mean?)  
(69) ZFC + Ramsey. 
(70) ZFC + Measurable:ZFC + "there exists a measurable cardinal".  
(71) ZFC + Concentrating Measurable.  
(72) ZFC + Strong.  
(73) ZFC + Woodin.  
(74) ZFC + Superstrong.  
(75) ZFC + Supercompact.  
(76) ZFC + Extendible.  
(77) ZFC + Vopenka.  
(78) ZFC + Almost Huge.  
(79) ZFC + Huge.  
(80) ZFC + Superhuge.  
(81) ZFC + (An < omega)(n-huge).  
(82) ZFC + Rank into Itself.
(83) ZFC + Rank + 1 into Itself.  
(84) VB + V into V. (Question 9:What does it mean?)

 



Reference:
[1]http://planetmath.org/ElementaryFunctionalArithmetic
(http://planetmath.org/ElementaryFunctionalArithmetic)
[2] Stephen G.Simpson. "Subsystems of Second Order Arithmetic",https://www.
math.psu.edu/simpson/sosoa/chapter1.pdf
(https://www.math.psu.edu/simpson/sosoa/chapter1.pdf) .
[3]H.Jerome Keisler.Nonstandard arithmetic and reverse mathematics.The 
Bulletine of Symbolic,Volume 12,Number 1,2006.
[4]Stephen G.Simpson.Friedman's research on subsystems of second order 
arithmetic, Harvey Friedman's research on the Foundations of Mathematics, 
Elsevier Science Publishers B.V.1985pp.137-160 
[5] H.Jerome Keisler and Julia Knight.Barwise:infinitary logic and 
admissible sets,The Bulletine of Symbolic,Volume 10,Number 1,2004. 
[6] Akihiro Kanamori.The Higher Infinite,Large Cardinals in Set Theory from 
Their Beginnings,Second Edition,`1994,Springer-Verlag.
[7]H.Jerome Keisler and Julia F.Knight.Barwise:infinitary logic and 
admissible sets,Bulletin of Symbolic Volume 10.Number 1,March 2004.pp.14
[8] Gaifman. Measurable cardinals and constructible sets (abstract).NAMS 11
(1964),771.XX.99

 


 


 



 

 


 





Zhang Yinsheng,Ph.D 

Support Center of Information Technology
Institute of Scientific & Technical Information of China 
 No.15 Fuxing Road, Beijing,Haidian District, China, 100038
e-mail: zhangyinsheng at istic.ac.cn(mailto:zhangyinsheng at istic.ac.cn) 
Tel:86-10-58882074  

 


 

_______________________________________________
FOM mailing list
FOM at cs.nyu.edu(mailto:FOM at cs.nyu.edu)
http://www.cs.nyu.edu/mailman/listinfo/fom
"


"
-------------- next part --------------
An HTML attachment was scrubbed...
URL: </pipermail/fom/attachments/20130524/033317b7/attachment.html>


More information about the FOM mailing list