[FOM] Falsify Platonism?
Nick Nielsen
john.n.nielsen at gmail.com
Thu Apr 22 19:37:34 EDT 2010
Doesn't this depend upon the logic used to derive the contradiction,
and whether one is a dialetheist or not?
Does a recognition of the possibility of alternative logics (including
paraconsistent logics) employed to derive contradictions soften the
hard tests to which Hilbert's program has been exposed?
Best wishes,
Nick Nielsen
> Lucas Kruijswijk <L.B.Kruijswijk at inter.nl.net> wrote:
> -> Hilbert's program contains hard tests, which are mostly
> -> proven to be impossible. Is there any hard test that can
> -> falsify Platonism?
And then Bill Taylor <W.Taylor at math.canterbury.ac.nz> wrote:
> Yes.
> If a contradiction is derived from PA, that will falsify Platonism.
> (Strictly speaking, that falsifies numerical Platonism; it might be easier
> still to falsify set-theoretic Platonism.)
> W. Taylor. (Basics Bill)
More information about the FOM
mailing list