[FOM] FOM Understanding Euclid

Colin McLarty colin.mclarty at case.edu
Fri Dec 5 13:47:19 EST 2008


----- Original Message -----
>From  	Vaughan Pratt <pratt at cs.stanford.edu>
Date  	Wed, 03 Dec 2008 15:15:17 -0800
To  	Foundations of Mathematics <fom at cs.nyu.edu>
Subject  	[FOM] Understanding Euclid

asked about how Euclid excluded the geometry of great circles on a sphere.  

Euclid's postulate that a line segment can always be extended was
understood to mean "extended to new points," i.e. a segment can always
be extended without returning to itself.  That is how he proves
Proposition 16, the first of his propositions that fails in the sphere
geometry:  "In any triangle, if one of the sides is produced, then the
exterior angle is greater than either of the interior and opposite angles."

I know that Johann Heinrich Lambert also took the postulate that way,
much later, and I believe pretty much everyone did before the 19th
century.   

best, Colin


More information about the FOM mailing list