[FOM] 2,3 Turing machine proof controversy
Bob Hearn
robert.a.hearn at Dartmouth.EDU
Mon Nov 19 20:15:30 EST 2007
Thanks to Vaughan (whom I've never met) for his kind introduction.
On Nov 17, 2007, at 10:00 PM, Vaughan Pratt wrote:
> I agree with both Hearn and Neary and Woods, the common element of
> which
> might be summarized as, incomparable conventions for small Turing
> machines yield incomparable results.
Speaking of small computing machines, and at the risk of contradicting
myself that the notion is ill-defined, I was discussing this issue
with Minsky, and he remarked that:
> In any case, I still would like to know if Post's original 3-Tag
> system is universal in any sense. That's the one with the two
> productions:
>
> 0 X X [string] --> [string] 0 0
> 1 X X [string] --> [string] 1 1 0 1
>
> because I regard that as the simplest known unsolved machine.
Minsky last seriously studied this problem in the 60s. I wonder
whether anyone has had a go at it recently? To my knowledge, it's
still not even known whether there are any initial strings that grow
indefinitely.
Back to Vaughan:
> Regarding Neary's point,
>
>> An objection that can be made to Kleine-Buning and
>> Ottmann's machine is that using a 2-dimensional tape is
>> unreasonable. In my opinion this is a much less a
>> contentious issue than Smith's (interesting) encoding.
>
> I would argue the opposite, namely that a 2-dimensional tape is in
> fact
> slightly *more* objectionable than Smith's initialization. ...
>
> This is because such a machine can simulate a two-counter machine.
Incidentally, the reduction chain from arbitrary Turing machines to
cyclic 2-tag systems to Wolfram's (2,3) machine proceeds via two-
counter machines.
Bob Hearn
More information about the FOM
mailing list