FOM: Re: Question: Normal form

G Barmpalias georgeb at
Fri Aug 17 10:14:14 EDT 2001

Thank you,

I found it in Smullyan: 'theory of formal systems' page 89.


>Date: Thu, 16 Aug 2001 20:16:36 +0100 (BST)
>From: G Barmpalias <georgeb at>
>Subject: Question: Normal form
>To: fom at
>Mime-Version: 1.0
>Content-MD5: RkHggs4Wim3i+cjZN5pHFg==
> A question:
> It has been obtained an improvement of the Normal for theorem for partial 
>recursive functions, such that the (universal) predicate T_n and the function U 
>belong to the smalest Grzegorczyk class E^0 (for every partial recursive 
>function f, there an index e such that f(x)= U(\mu~y[T_n(e,x,y)]) ).
> Does any member of the list know a specific reference for this result?
> PS Odifreddi mentions the result in his book classical recursive functions 
>Vol.II page 306.



More information about the FOM mailing list