FOM: non-standard models
Walter Felscher
walter.felscher at uni-tuebingen.de
Tue Dec 2 09:28:35 EST 1997
On Sun, 30 Nov 1997, Neil Tennant wrote:
> I would like to know the earliest documented observation that there are
> non-standard models for the theory of arithmetic. I am interested not so
> much in date of first publication, as date of first realization of this fact.
Skolem in "Ueber einige Grundlagenfragen der Mathematik" [Skrifter
Videnskapsakademiet i Oslo, I no. 4 (1929) 1-49] conjectured them when
writing about characterizations of the number series
Man bildet sich nun ein, diese Charakterisierung koenne absolut
gemacht werden, naemlich dadurch, dass man die Gueltigkeit der
vollstaendigen Induktion fordert. In dieser Forderung tritt jedoch der
Begriff der "Aussagenfunktion", oder wenn man will "Menge" auf, und in
einer folgerichtigen formalistischen Mathematik muss dieser Begriff
wieder durch die Forderung gewisser Schlussregeln charakterisiert werden.
Hao Wang on p.41 of "A survey of Skolem's work in logic" [Thoralf
Skolem: Selected Works in Logic, ed.J.E.Fenstad, Oslo 1970, pp.17-52]
comments that passage writing
It is for the first time suggested in print (for an unpublished
anticipation, compare Dedekind's letter, JSL 22 (1957) 150) that given
any set of theorems on natural numbers, we can find a nonstandard model
in which these theorems are true.
In "Ueber die Unmoeglichkeit einer Charakterisierung der Zahlenreihe
mittels eines endlichen Axiomensystems" [Norsk Matematisk Forening,
Skrifter Ser. 2 , no.1-12 (1933) 73-82 ] Skolem then constructs his
famous nonstandard model N* .
W.F.
More information about the FOM
mailing list