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Abstract The spectral abscissa is a fundamental map from the set of complex
matrices to the real numbers. Denoted α and defined as the maximum of the real
parts of the eigenvalues of a matrix X, it has many applications in stability analysis
of dynamical systems. The function α is nonconvex and is non-Lipschitz near matrices
with multiple eigenvalues. Variational analysis of this function was presented in
Burke and Overton (Math Program 90:317–352, 2001), including a complete charac-
terization of its regular subgradients and necessary conditions which must be satisfied
by all its subgradients. A complete characterization of all subgradients of α at a
matrix X was also given for the case that all active eigenvalues of X (those whose
real part equals α(X)) are nonderogatory (their geometric multiplicity is one) and
also for the case that they are all nondefective (their geometric multiplicity equals
their algebraic multiplicity). However, necessary and sufficient conditions for all
subgradients in all cases remain unknown. In this paper we present necessary and
sufficient conditions for the simplest example of a matrix X with a derogatory,
defective multiple eigenvalue.
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1 Introduction

Let Cn×n denote the Euclidean space of n × n complex matrices. Define the spectral
abscissa α : Cn×n → R by

α(X) = max {Re λ : λ ∈ σ(X)}

where Re denotes real part and σ(X) denotes the spectrum, or set of eigenvalues,
of X. The spectral abscissa, along with other related spectral functions such as the
spectral radius, is a fundamental concept with many applications in stability analysis
of dynamical systems. Spectral functions are nonconvex and non-Lipschitz near
matrices with multiple eigenvalues. Variational analysis for a broad class of spectral
functions was presented in [4]. In this paper we present some extensions of these
results for the spectral abscissa.

Define an eigenvalue λ ∈ σ(X) to be active if Re λ = α(X). The algebraic multi-
plicity of λ is its multiplicity as a root of the characteristic polynomial det(X − zI)
while its geometric multiplicity is the number of linearly independent eigenvectors v

satisfying Xv = λv. The latter is always less than or equal to the former. When the
algebraic multiplicity is one, λ is said to be simple and when the geometric multiplicity
is one λ is said to be nonderogatory. If the algebraic multiplicity equals the geometric
multiplicity, λ is said to be nondefective or semisimple. Simple eigenvalues are
nonderogatory and nondefective. A nonderogatory eigenvalue λ with multiplicity m
corresponds to a single m × m Jordan block in the Jordan normal form of X, while a
nondefective eigenvalue λ with multiplicity m corresponds to m scalar blocks in the
Jordan form of X. The set of matrices with a given Jordan block structure defines a
submanifold of Cn×n whose properties are well known [1]. Given that an eigenvalue
λ has multiplicity m, the most generic Jordan structure is a single block, meaning λ is
nonderogatory.

The analysis in [4] included a complete characterization of all subgradients of the
spectral abscissa α at a matrix X for the case that all active eigenvalues of X are
nonderogatory, showing also that this is exactly the case when α is regular at X. A
complete characterization was also given for the case that all active eigenvalues are
nondefective. However, necessary and sufficient conditions for all subgradients in the
case of active eigenvalues that are both derogatory and defective remain unknown.
In this paper we present necessary and sufficient conditions for the simplest example
of a matrix X with a derogatory, defective active eigenvalue.

The paper is organized as follows. In Section 2 we review some of the results of
Burke and Overton [4] for variational analysis of the spectral abscissa. We then state
our main result for the simplest derogatory, defective example in Section 3. The proof
is given in Sections 4 and 5. We discuss the horizon subgradients in Section 6. We
make some concluding remarks in Section 7.
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2 Review of Known Results

We start by defining subgradients in the sense of Mordukhovich [8] as expounded in
[10, Chapter 10]. We treat Cn×n as a Euclidean space with the real inner product

〈Y, Z 〉 = Re tr Y∗ Z , (1)

where ∗ denotes the complex conjugate transpose operation and tr denotes trace.
Since α is a continuous function, its subgradients are defined as follows. A matrix
Y ∈ Cn×n is a regular subgradient of α at X ∈ Cn×n (written Y ∈ ∂̂α(X)) if

lim inf
Z→0

α(X + Z ) − α(X) − 〈Y, Z 〉
‖Z‖ ≥ 0.

A matrix Y ∈ Cn×n is a subgradient of α at X (written Y ∈ ∂α(X)) if there exist
sequences Xi and Yi in Cn×n satisfying

Xi → X, Yi ∈ ∂̂α(Xi), Yi → Y. (2)

A matrix Y ∈ Cn×n is a horizon subgradient of α at X (written Y ∈ ∂∞α(X)) if Y = 0
or (2) holds with the last condition replaced by siYi → Y, where si is a positive real
sequence converging to zero.

Let us establish notation for the Jordan normal form. A nonsingular matrix P ∈
Cn×n transforms X ∈ Cn×n to Jordan form if

P−1 X P = J =
⎛
⎜⎝

J(1)

. . .

J(p)

⎞
⎟⎠ , where J( j) =

⎛
⎜⎜⎝

J( j)
1

. . .

J( j)
q( j)

⎞
⎟⎟⎠ (3)

with J( j)
k =

⎛
⎜⎜⎜⎜⎝

μ j 1
· ·

· ·
· 1
μ j

⎞
⎟⎟⎟⎟⎠

, k = 1, . . . , q( j), j = 1, . . . , p. (4)

Here μ1, . . . , μp denote the distinct eigenvalues of X. Each μ j corresponds to q( j)

Jordan blocks J( j)
k with size m( j)

k × m( j)
k . Note that q( j) is the geometric multiplicity of

μ j, while

m( j) =
q( j)∑
k=1

m( j)
k .

is its algebraic multiplicity. The size of the largest Jordan block for μ j is denoted

n( j) = max
k=1,...,q( j)

m( j)
k .
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The eigenvalue μ j is said to be nonderogatory if q( j) = 1 and nondefective if n( j) = 1
(and hence q( j) = m( j)). Finally, let

A = { j | Re μ j = α(X)}.

The eigenvalue μ j is said to be active if j ∈ A.
We now review several results from [4] that we will use. Since we need these only

for the spectral abscissa, we present them more succinctly than they appear in [4].
We start with necessary conditions for subgradients and horizon subgradients. In
what follows, the structure in W imposed by the structure in the Jordan form J arises
from the commutativity condition XY∗ = Y∗ X derived in [4, Theorem 2.1].

Theorem 1 [4, Corollary 8.1] If Y ∈ ∂α(X) or Y ∈ ∂∞α(X), then any P satisfying (3),
(4) also satisf ies

P∗Y P−∗ = W =
⎛
⎜⎝

W(1)

. . .

W(p)

⎞
⎟⎠ , (5)

with W( j) = 0 if j 
∈ A, and otherwise

W( j) =

⎛
⎜⎜⎝

W( j)
11 · · · W( j)

1q( j)

...
...

...

W( j)
q( j)1 · · · W( j)

q( j)q( j)

⎞
⎟⎟⎠ , (6)

where W( j)
rs is a rectangular m( j)

r × m( j)
s lower triangular Toeplitz matrix, r = 1, . . . , q( j),

s = 1, . . . , q( j), j = 1, . . . , p. By this we mean that the value of the k, � entry in each
W( j)

rs depends only on the dif ference k − � (is constant along the diagonals), and is
zero if k < l or m( j)

r − k > m( j)
s − � (is zero above the main diagonal, drawn either

from the top left of the block, or from the bottom right). Finally, if Y ∈ ∂α(X) then
the eigenvalues of Y (equivalently of W) are real, nonnegative, and sum to one, while
if Y ∈ ∂∞α(X) , it must be nilpotent, meaning that its eigenvalues (equivalently the
eigenvalues of W) are all zero.

See [1, Section 4.2] or [9] for illustrations of the block structure in (6).
In the case of regular subgradients, necessary and sufficient conditions are known:

Theorem 2 [4, Theorem 7.2] If Y ∈ ∂̂α(X) then the diagonal blocks of W = P∗Y P−∗
in (5) satisfy W( j) = 0 if j 
∈ A and otherwise

W( j) =

⎛
⎜⎜⎝

W( j)
11

. . .

W( j)
q( j)q( j)

⎞
⎟⎟⎠
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with

W( j)
kk =

⎛
⎜⎜⎜⎜⎜⎝

θ
( j)
1

θ
( j)
2 ·
· · ·
· · · ·

θ
( j)

m( j)
k

· · θ
( j)
2 θ

( j)
1

⎞
⎟⎟⎟⎟⎟⎠

, k = 1, . . . , q( j), j = 1, . . . , p,

for some θ
( j)
� , � = 1, . . . , n( j). Thus, for each j ∈ A, the block W( j) is itself block

diagonal with square lower triangular Toeplitz blocks, with the entries on the diagonals
of the Toeplitz blocks constant not only within each block, but also across all q( j)

blocks. Furthermore, in accordance with the condition on the eigenvalues of Y, we
have

θ
( j)
1 ∈ R, θ

( j)
1 ≥ 0,

∑
j∈A

m( j)θ
( j)
1 = 1

and also the additional condition

Re θ
( j)
2 ≥ 0, j ∈ A.

Finally, only those Y satisfying the conditions given above lie in ∂̂α(X).

Necessary and sufficient conditions for Y to be a subgradient are known for the
case that all active eigenvalues of X are nonderogatory. In fact, this is exactly the case
that α is regular at X: all its subgradients are regular, and the horizon subgradients
satisfy a recession cone condition.

Theorem 3 [4, Theorem 8.2] Suppose that Y ∈ ∂α(X) and that all active eigenvalues
of X are nonderogatory, so that the corresponding matrices J( j) are all full Jordan
blocks of order m( j), and hence the diagonal blocks of W = P∗Y P−∗ in (5) are all
lower triangular Toeplitz, i.e.,

W( j) =

⎛
⎜⎜⎜⎜⎜⎝

θ
( j)
1

θ
( j)
2 ·
· · ·
· · · ·

θ
( j)
m( j) · · θ

( j)
2 θ

( j)
1

⎞
⎟⎟⎟⎟⎟⎠

,

for some θ
( j)
� , � = 1, . . . , m( j). We have W( j) = 0 if j 
∈ A, and in accordance with the

condition on the eigenvalues of Y we have

θ
( j)
1 ∈ R, θ

( j)
1 ≥ 0,

∑
j∈A

m( j)θ
( j)
1 = 1

as well as the additional condition

Re θ
( j)
2 ≥ 0, j ∈ A.

Only those Y satisfying the conditions given above are subgradients of α at X, and all
these subgradients are regular, so ∂̂α(X) = ∂α(X). Finally ∂∞α(X), the set of horizon
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subgradients of α at X, is the recession cone of ∂α(X), that is, horizon subgradients
satisfy the same conditions as subgradients except that θ

( j)
1 = 0, j = 1, . . . , p.

Necessary and sufficient conditions for Y to be a subgradient are also known for
the case that all active eigenvalues of X are nondefective.

Theorem 4 [4, Theorem 8.3] Suppose that Y ∈ ∂α(X) and that all active eigenvalues
of X are nondefective, so that the corresponding J( j) = μ j I, and hence the diagonal
blocks of W = P∗Y P−∗ in (5) have no particular structure. We have W( j) = 0 if j 
∈ A,
and the eigenvalues of Y (equivalently of W) are all real, nonnegative, and sum to
one. Only those matrices satisfying these conditions lie in ∂α(X). Furthermore, the
set of horizon subgradients of α at X consists of the matrices Y satisfying the same
conditions, except that the eigenvalues of Y (equivalently of W) are all zero.

We close this section by mentioning some examples of the usefulness of this
theory. In applications, often one wants to minimize a spectral function over a family
of matrices A(p) where p is a vector of parameters. A simple but instructive example
is maximizing the asymptotic decay rate for the damped linear oscillator u′′ + pu′ + u
over a single damping parameter p [3]. Although for physical reasons one would
normally assume p is real, for technical reasons related to the chain rule used below
we take p to be a complex parameter. This yields the following spectral abscissa
minimization problem:

min
p∈C

α(A(p)) with A(p) =
(

0 1
−1 −p

)
.

Figure 1 plots α(A(p)) for p = 2 + �p with �p in the real interval [−1, 1] in the left
panel and �p in the imaginary interval [−i, i] in the right panel. The minimizer is
p̃ = 2, for which A( p̃) has the Jordan form

P−1 A( p̃)P = J =
(−1 1

0 −1

)
, with P =

(
1 0
1 1

)
.

The only active eigenvalue of A( p̃) is the double, nonderogatory eigenvalue −1.
According to Theorem 1, the subgradients of α at A( p̃) are given by

∂α(X) =
{

P−∗
( 1

2 0
θ 1

2

)
P∗ =

( 1
2 + θ −θ

θ 1
2 − θ

)
with Re θ ≥ 0

}

while the horizon subgradients are given by

∂∞α(X) =
{

P−∗
(

0 0
θ 0

)
P∗ =

(
θ −θ

θ −θ

)
with Re θ ≥ 0

}
.

Furthermore, α is regular at A( p̃). Noting that the only horizon subgradient orthog-
onal to the Jacobian ∇p A in the inner product (1) is zero, we can apply a chain rule
from nonsmooth analysis [10, Theorem 10.6] to conclude that

∂(α ◦ A)( p̃) = {〈∇p A, Y〉 with Y ∈ ∂α(A( p̃))
}

= {θ − 1
2

with Re θ ≥ 0}. (7)
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Fig. 1 The spectral abscissa of the damped linear oscillator. Left: α(A(2 + �p)) for real �p. Right:
same, for imaginary �p

Projecting this set onto the real and imaginary axes we obtain [− 1
2 , ∞) and (−∞,∞)i

respectively, as is consistent with the left and right panels of Fig. 1. Note that the
unbounded derivatives for real p > p̃ indicate a splitting of the double eigenvalue
−1 into two real eigenvalues, one of which grows as O(p − p̃)1/2, while for real
p < p̃, the double eigenvalue splits into a complex conjugate pair for which only
the imaginary part grows as O( p̃ − p)1/2. This distinction is captured in the set of
subgradients and horizon subgradients by the condition Re θ ≥ 0. If we were to
change the example to one with a nonderogatory eigenvalue with multiplicity three,
we would see non-Lipschitz growth in every perturbation direction. Finally, since 0
is in the interior of ∂(α ◦ A)( p̃), we conclude that p̃ is in fact a sharp local minimizer
[3, Prop. 4.3] of α ◦ A, as is indicated by Fig. 1.

In the example just discussed the matrix family depends on only one parameter.
For another simple example with multiple parameters, see [3, Section 2]. For more
interesting examples motivated by some long-standing open questions in control, see
[2, Section 3] and [7]. For all of these examples, an optimality analysis of the sort
just described for the damped linear oscillator leads to the conclusion that a certain
choice of parameters p̃ gives a sharp local minimizer of the spectral abscissa of a
specific matrix family.

Spectral radius optimization problems are also important in applications. For
an example of a matrix family A(p) describing the behavior of a Markov chain,
see [5]. In this example, the largest eigenvalue in modulus is fixed at one and the
goal is to minimize the largest of the complex moduli of the remaining eigenvalues
in order to obtain the Markov chain with fastest asymptotic convergence. A local
optimality analysis is done at a candidate optimal matrix with many distinct active
eigenvalues, one of them a double real nonderogatory eigenvalue and the others
simple eigenvalues occurring in complex conjugate pairs, but all having the same
modulus.

Although nonderogatory eigenvalues are the most generic, structure present in
the matrix family may lead to local optimizers p̃ for which A( p̃) has active eigen-
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values which are both derogatory and defective. Two spectral radius optimization
problems of this sort, arising in surface subdivision schemes with applications in
computer graphics, are studied in [6, Chapters 2 and 4]. In both problems several
of the largest eigenvalues of a matrix family A(p) are fixed and the largest of the
moduli of the remaining eigenvalues is to be minimized. In one of these examples, the
optimal matrix A( p̃) has one active eigenvalue associated with three Jordan blocks
respectively having order 2, 1 and 1. In the second example, A( p̃) apparently has four
Jordan blocks respectively having order 5, 3, 2 and 2. Both of these optimizers were
found numerically; in the first case, the Jordan structure was then verified analytically
but in the second case this was not possible given the complexity of the problem.
In both these examples the active eigenvalue is apparently zero (definitely in the
first case) so optimality conditions are not needed as no eigenvalue can have smaller
modulus than zero. However, similar problems can be constructed for which analysis
of optimality conditions is the only path to verifying local optimality.

Returning to the spectral abscissa α, in the case of derogatory active eigenvalues
one cannot expect to use a chain rule as strong as the one exploited in (7), because α

is not regular at matrices with a derogatory active eigenvalue. However, an inclusion
of the form

∂(α ◦ A)( p̃) ⊂ {〈∇p A, Y〉 for Y ∈ ∂α(A( p̃)
}

still applies [10, Theorem 10.6]. Hence the importance of obtaining necessary condi-
tions for Y ∈ ∂α(A) in the derogatory, defective case that are as strong as possible.
This provides motivation for the analysis in the remainder of the paper.

3 Main Result

When n = 2 the eigenvalues of X are either nonderogatory or nondefective, so the
simplest example of a matrix with an eigenvalue that is both derogatory and defective
occurs when n = 3, namely

X = J =
⎛
⎝

0 1 0
0 0 0
0 0 0

⎞
⎠ . (8)

This matrix is in Jordan form, so P in (3) is the identity matrix, and its only eigenvalue
is μ1 = 0, with q(1) = 2 Jordan blocks of sizes m(1)

1 = 2, m(1)
2 = 1. According to

Theorem 1, necessary conditions for Y to be a subgradient of α at J are that it satisfies

Y =
⎛
⎝

a 0 0
b a c
d 0 e

⎞
⎠

and that the eigenvalues of Y are real, nonnegative and sum to one. Exchanging the
second and third rows and the second and third columns transforms Y to triangular
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form, so the eigenvalues of Y are its diagonal entries a, a, and e. Hence the necessary
conditions for Y to be a subgradient reduce to

Y =
⎛
⎝

a 0 0
b a c
d 0 1 − 2a

⎞
⎠ with a ∈

[
0,

1
2

]
. (9)

Before continuing with this example, we note that this observation applies more
generally, as stated in the following lemma.

Lemma 1 Let Y be a subgradient of α at X and assume that no active eigenvalue of
X has multiple Jordan blocks with the same size, that is, for each active eigenvalue
μ j, the block sizes m( j)

1 , . . . , m( j)
q( j) are distinct. Then each of the diagonal blocks of

W = P∗Y P−∗ in (5) has its eigenvalues on its diagonal, and hence the diagonal entries
of W must be real, nonnegative and sum to one.

Proof Since W is block diagonal with zero blocks corresponding to inactive eigen-
values, we need only prove the result for each block W( j) corresponding to an
active eigenvalue. Fix j, set V = W( j) and assume without loss of generality that
m( j)

1 > m( j)
2 > · · · > m( j)

q( j) . We will show that there exists a permutation σ , that is
a bijection from {1, . . . , m( j)} to {1, . . . , m( j)}, with the property that the permuted
block U , defined by Ui,i′ = Vσ(i)σ (i′), is lower triangular. Since U and V have the same
diagonal entries (in a different order), this will show that the eigenvalues of V are on
its diagonal.

The structure of V = W( j) is shown in (6). Define the map

(b , k) : {1, . . . , m( j)} → {1, . . . , q( j)} × {1, . . . , m( j)
1 }

as follows: b(i) is the block number corresponding to row and column i of V and
k(i) is the corresponding index within the block. Thus, for example, for all i we have
m( j)

1 + · · · + m( j)
b(i)−1 + k(i) = i. We know from the comments following (6) that Vi,i′ =

0 if either k(i) < k(i′) or m( j)
b(i) − k(i) > m( j)

b(i′) − k(i′). So, we choose σ so that σ(i) <

σ(i′) when k(i) < k(i′) or when k(i) = k(i′) and m( j)
b(i) > m( j)

b(i′). This last inequality is
equivalent to b(i) < b(i′) and hence to i < i′. For example, if the block sizes are 4, 2
and 1, then, for i = 1, . . . , 7, b(i) takes the values 1,1,1,1,2,2,3, k(i) takes the values
1,2,3,4,1,2,1, and σ(i) takes the values 1,5,7,2,6,3,4. This ensures that the permuted
block U is lower triangular.

Since this argument holds for all active eigenvalues μ j, we have shown that all
the eigenvalues of W are on its diagonal. That the diagonal entries must be real,
nonnegative and sum to one then follows from the last part of Theorem 1. ��

Returning to the example J in (8), first note that Theorem 2 says that necessary
and sufficient conditions for Y to be a regular subgradient of α at J are

Y =
⎛
⎝

1
3 0 0
w 1

3 0
0 0 1

3

⎞
⎠ with Re w ≥ 0. (10)
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We now present necessary and sufficient conditions for Y to be a subgradient of α

at J:

Theorem 5 Def ine ga,b ,c,d = Re
(
b − cd

1−3a

)
and with it the set

γ (J) =
⎧⎨
⎩

⎛
⎝

a 0 0
b a c
d 0 1 − 2a

⎞
⎠ with a ∈ [0,

1
2
] and, if a 
= 1

3
, ga,b ,c,d ≥ 0

⎫⎬
⎭ (11)

This set is precisely the set of subgradients of α at J, i.e.,

∂α(J) = γ (J).

We break the proof into two parts, first showing that ∂α(J) ⊂ γ (J) in the next
section and then showing the reverse inclusion in the following section.

4 Proof of the Inclusion ∂α(J) ⊂ γ (J)

The method we use to prove Theorem 5 is a very direct one. We know that a
subgradient Y must have the form (9). Since subgradients are limits of regular
subgradients we study sequences Xi → J and Yi → Y with Yi ∈ ∂̂α(Xi). The set of
all such Y is the set of subgradients. There are only finitely many possible Jordan
structures for 3 × 3 matrices, so we assume w.l.o.g. that in each sequence all Xi have
the same Jordan structure (otherwise, we can consider a subsequence). We will go
through each of the possible Jordan structures and discuss what limits are possible
for Yi, thereby establishing the new necessary conditions for Y given in the theorem
statement. We will then prove that these conditions are sufficient in Section 5.

In dimension 3 there are 9 possible Jordan structures for Ji = P−1
i Xi Pi, assuming

in what follows that Re αi ≥ Re βi ≥ Re γi, namely

J1
i =

⎛
⎝

αi 0 0
0 αi 0
0 0 αi

⎞
⎠ J2

i =
⎛
⎝

αi 1 0
0 αi 0
0 0 αi

⎞
⎠

J3
i =

⎛
⎝

αi 0 0
0 αi 1
0 0 αi

⎞
⎠ J4

i =
⎛
⎝

αi 1 0
0 αi 1
0 0 αi

⎞
⎠

J5
i =

⎛
⎝

αi 1 0
0 αi 0
0 0 βi

⎞
⎠ J6

i =
⎛
⎝

αi 0 0
0 αi 0
0 0 βi

⎞
⎠

J7
i =

⎛
⎝

αi 0 0
0 βi 1
0 0 βi

⎞
⎠ J8

i =
⎛
⎝

αi 0 0
0 βi 0
0 0 βi

⎞
⎠

J9
i =

⎛
⎝

αi 0 0
0 βi 0
0 0 γi

⎞
⎠
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Let us denote by S j(J) the set of all possible subgradient limits when Xi has Jordan
form J j

i . In the following we will go through each of the 9 cases and find necessary
conditions for Y ∈ S j(J), j = 1, . . . , 9. For each j in turn, we write Xi = Pi J

j
i P−1

i → J
(note that Xi, Yi and Pi also depend on j but we will suppress this dependence).
Note that, in general, P−1

i and Pi are not both bounded, but the eigenvalues of Xi,
namely αi, βi and γi, must converge to 0. We will repeatedly exploit Theorem 2 which
characterizes the structure of the regular subgradients Yi ∈ ∂̂α(Xi). Note that each
distinct Jordan structure J j

i imposes a different structure on W = P∗
i Yi P−∗

i .

Case 1 When the Jordan type of the sequence is J1
i we have Xi = Pi(αi I)P−1

i = αi I,
so it cannot converge to J and hence

S1(J) = ∅.

Case 2 In this case we only get regular subgradients. Let

Xi → J and Yi → Y

where

Xi = Pi

⎛
⎝

αi 1 0
0 αi 0
0 0 αi

⎞
⎠ P−1

i and Yi = P−∗
i

⎛
⎝

1
3 0 0
wi

1
3 0

0 0 1
3

⎞
⎠ P∗

i

with Re wi ≥ 0. Note that the given structure for Yi is dictated by Theorem 2 since
Yi ∈ ∂̂α(Xi). Now we do the following analysis:

Y∗
i = Pi

⎛
⎝

1
3 w∗

i 0
0 1

3 0
0 0 1

3

⎞
⎠ P−1

i

= Pi

⎛
⎝1

3
I +

⎛
⎝

0 w∗
i 0

0 0 0
0 0 0

⎞
⎠

⎞
⎠ P−1

i

= 1
3

I + w∗
i Pi

⎛
⎝

⎛
⎝

0 1 0
0 0 0
0 0 0

⎞
⎠ + αi I − αi I

⎞
⎠ P−1

i

= 1
3

I + w∗
i (Xi − αi I).

Because αi → 0 and Xi → J and Y∗
i = 1

3 I + w∗
i (Xi − αi I) → Y∗ we see that wi must

converge, say to w, with Re w ≥ 0 as Re wi ≥ 0. We conclude that

Y = 1
3

I + wJ =
⎛
⎝

1
3 0 0
w 1

3 0
0 0 1

3

⎞
⎠ ∈ ∂̂α(J).

This means Y must be a regular subgradient:

S2(J) ⊂ ∂̂α(J).
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Case 3 In Case 3 the Xi satisfy

Xi = Pi

⎛
⎝

αi 0 0
0 αi 1
0 0 αi

⎞
⎠ P−1

i

which can be rewritten as

Xi = Pi

⎛
⎝

0 0 1
1 0 0
0 1 0

⎞
⎠

⎛
⎝

αi 1 0
0 αi 0
0 0 αi

⎞
⎠

⎛
⎝

0 1 0
0 0 1
1 0 0

⎞
⎠ P−1

i

so this case reduces to Case 2:

S3(J) ⊂ ∂̂α(J).

Case 4 In this case we require

Xi → J and Yi → Y

where

Xi = Pi

⎛
⎝

αi 1 0
0 αi 1
0 0 αi

⎞
⎠ P−1

i and Yi = P−∗
i

⎛
⎝

1
3 0 0
wi

1
3 0

yi wi
1
3

⎞
⎠ P∗

i .

Again the structure of Yi comes from Theorem 2, so we have Re wi ≥ 0 but yi ∈ C is
unrestricted. We know that Y satisfies (9). Since det(Yi) = 1

27 is constant it has to be
stable under the limit and that means that

det(Y) = a2(1 − 2a) = 1
27

.

The only solution for a ∈ [0, 1
2 ] is then a = 1

3 , so

S4(J) ⊂
⎧⎨
⎩Y =

⎛
⎝

1
3 0 0
b 1

3 c
d 0 1

3

⎞
⎠

⎫⎬
⎭ .

Case 5 We consider two “sub-cases”.

Re αi > Re βi

Here we require

Xi → J and Yi → Y

where

Xi = Pi

⎛
⎝

αi 1 0
0 αi 0
0 0 βi

⎞
⎠ P−1

i and Yi = P−∗
i

⎛
⎝

1
2 0 0
wi

1
2 0

0 0 0

⎞
⎠ P∗

i ,
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with Re wi ≥ 0, so we have

XiY∗
i = Pi

⎛
⎝

αi 1 0
0 αi 0
0 0 βi

⎞
⎠

⎛
⎝

1
2 w∗

i 0
0 1

2 0
0 0 0

⎞
⎠ P−1

i

= Pi

⎛
⎝

αi
2 αiw

∗
i + 1

2 0
0 αi

2 0
0 0 0

⎞
⎠ P−1

i = αiY∗
i + Hi

with Hi = Pi

⎛
⎝

0 1
2 0

0 0 0
0 0 0

⎞
⎠ P−1

i .

We know that αi → 0 and XiY∗
i → JY∗ = aJ since Y satisfies (9). Therefore

Hi → aJ.

We will show that this means that a = 1
2 . Consider

Y∗
i = 1

2
I + Ki with Ki = Pi

⎛
⎝

0 w∗
i 0

0 0 0
0 0 − 1

2

⎞
⎠ P−1

i .

The sequence Yi converges and therefore Ki = Y∗
i − 1

2 I converges and so does

K2
i = Pi

⎛
⎝

0 0 0
0 0 0
0 0 1

4

⎞
⎠ P−1

i .

We have

Xi = αi I + 2Hi + 4(βi − αi)K2
i → 0 + 2aJ + 0

and we can conclude, since Xi → J, that J = 2aJ, and therefore a = 1
2 .

Using Ki = 2w∗
i Hi − 2K2

i we see that wi must converge, say to w, with Re w ≥ 0.
We get then that

Ki = Y∗
i − 1

2
I → Y∗ − 1

2
I =

⎛
⎝

0 b ∗ d∗
0 0 0
0 c∗ − 1

2

⎞
⎠ =: K,

So,

K2
i → K2 =

⎛
⎝

0 c∗d∗ − d∗
2

0 0 0
0 − c∗

2
1
4

⎞
⎠ .

Hence,

Ki = 2w∗
i Hi − 2K2

i → 2w∗aJ − 2K2 =
⎛
⎝

0 w∗ − 2c∗d∗ d∗
0 0 0
0 c∗ − 1

2

⎞
⎠ .
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It follows from the equations for K that b ∗ = w∗ − 2c∗d∗. Thus,

S1
5(J) ⊂

⎧⎨
⎩Y =

⎛
⎝

1
2 0 0
b 1

2 c
d 0 0

⎞
⎠ with Re(b + 2cd) ≥ 0

⎫⎬
⎭ .

Here the superscript denotes the sub-case of Case 5.

Re αi = Re βi

The sequences

Xi → J and Yi → Y

in this case are given by

Xi = Pi

⎛
⎝

αi 1 0
0 αi 0
0 0 βi

⎞
⎠ P−1

i and Yi = P−∗
i

⎛
⎝

pi 0 0
wi pi 0
0 0 1 − 2pi

⎞
⎠ P∗

i

where Re wi ≥ 0 and pi ∈ [0, 1
2 ], so, w.l.o.g. we can assume that pi converges. There

are two “sub-sub-cases".

1. Suppose pi → 1
3 . Then

Y∗
i − pi I = Pi

⎛
⎝

0 w∗
i 0

0 0 0
0 0 1 − 3pi

⎞
⎠ P−1

i

→
⎛
⎝

a − 1
3 b ∗ d∗

0 a − 1
3 0

0 c∗ 2
3 − 2a

⎞
⎠ .

Since the determinant is a continuous function we conclude that a = 1
3 , so

S2,1
5 (J) ⊂

⎧⎨
⎩Y =

⎛
⎝

1
3 0 0
b 1

3 c
d 0 1

3

⎞
⎠

⎫⎬
⎭ .

Here the notation indicates that this is the first sub-sub-case of the second sub-
case of Case 5.

2. Now assume pi → p where p 
= 1
3 . Here we will consider

Li = Y∗
i − pi I = Pi

⎛
⎝

0 w∗
i 0

0 0 0
0 0 1 − 3pi

⎞
⎠ P−1

i

→ Y∗ − pI =
⎛
⎝

a − p b ∗ d∗
0 a − p 0
0 c∗ 1 − 2a − p

⎞
⎠
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and therefore

L2
i = Pi

⎛
⎝

0 0 0
0 0 0
0 0 (1 − 3pi)

2

⎞
⎠ P−1

i converges.

We deduce that Mi = 1
(1−3pi)2 L2

i converges. Let’s call the limit M:

M = 1
(1 − 3p)2 (Y∗ − pI)2.

Now define

Ni = Pi

⎛
⎝

0 1 0
0 0 0
0 0 0

⎞
⎠ P−1

i = Xi − αi I − (βi − αi)Mi → J.

This implies that wi converges to a limit w with Re w ≥ 0 since

Y∗
i = pi I + (1 − 3pi)Mi + w∗

i Ni.

Now consider

XiY∗
i = Pi

⎛
⎝

αi pi αiw
∗
i + pi 0

0 αi pi 0
0 0 βi(1 − 2pi)

⎞
⎠ P−1

i

= (αiw
∗
i + pi)Ni + αi pi I + (βi(1 − 2pi) − αi pi)Mi

→ (0 + p)J + 0 + 0 = pJ.

Since XiY∗
i → JY∗ = aJ we find that p = a. So,

Y∗
i → aI + (1 − 3a)M + w∗ J =

⎛
⎝

a w∗ + c∗d∗
1−3a d∗

0 a 0
0 c∗ 1 − 2a

⎞
⎠ .

This means b ∗ = w∗ + c∗d∗
1−3a , so we have

Re(b − cd
1 − 3a

) ≥ 0

and hence

S2,2
5 (J) ⊂

⎧⎨
⎩Y =

⎛
⎝

a 0 0
b a c
d 0 1 − 2a

⎞
⎠ with a 
= 1

3
and Re(b − cd

1 − 3a
) ≥ 0

⎫⎬
⎭ .

So, we write S2
5(J) = S2,1

5 (J) ∪ S2,2
5 (J) and S5(J) = S1

5(J) ∪ S2
5(J).

Case 6 We consider two sub-cases.

Re αi > Re βi

Here the sequences

Xi → J and Yi → Y
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are given by

Xi = Pi

⎛
⎝

αi 0 0
0 αi 0
0 0 βi

⎞
⎠ P−1

i and Yi = P−∗
i

⎛
⎝

1/2 0 0
0 1

2 0
0 0 0

⎞
⎠ P∗

i .

We easily get a contradiction which rules out this case. Assume that

Pi =
⎛
⎝

pi
11 pi

12 pi
13

pi
21 pi

22 pi
23

pi
31 pi

32 pi
33

⎞
⎠ . (12)

Then

(Xi)12 = pi
13(αi − βi)(pi

11 pi
32 − pi

12 pi
31)

det(Pi)
→ 1

and

(Y∗
i )12 = 1

2
pi

13(pi
11 pi

32 − pi
12 pi

31)

det(Pi)
= 1

2
(Xi)12

αi − βi

which doesn’t converge. So,

S1
6(J) = ∅.

Re αi = Re βi

Now we have

Xi → J and Yi → Y

where

Xi = Pi

⎛
⎝

αi 0 0
0 αi 0
0 0 βi

⎞
⎠ P−1

i and Yi = P−∗
i

⎛
⎝

qi 0 0
0 qi 0
0 0 1 − 2qi

⎞
⎠ P∗

i .

Assume again that (12) holds, so

(Xi)12 = pi
13(αi − βi)(pi

11 pi
32 − pi

12 pi
31)

det(Pi)
→ 1

and

(Y∗
i )12 = 1

2
pi

13(3qi − 1)(pi
11 pi

32 − pi
12 pi

31)

det(P)
= 1

2
3qi − 1
αi − βi

(Xi)21

which can only converge if qi → 1
3 . But this means that a = 1

3 by a determinant
argument which gives:

S6(J) = S2
6(J) ⊂

⎧⎨
⎩Y =

⎛
⎝

1
3 0 0
b 1

3 c
d 0 1

3

⎞
⎠

⎫⎬
⎭ .
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Case 7 We consider two sub-cases.

Re αi > Re βi

Let

Xi → J and Yi → Y

where

Xi = Pi

⎛
⎝

αi 0 0
0 βi 1
0 0 βi

⎞
⎠ P−1

i and Yi = P−∗
i

⎛
⎝

1 0 0
0 0 0
0 0 0

⎞
⎠ P∗

i

So

XiY∗
i = Pi

⎛
⎝

αi 0 0
0 0 0
0 0 0

⎞
⎠ P−1

i = αiY∗
i → 0.

Since XiY∗
i → JY∗ = aJ we deduce that a = 0. Considering then that, since all the

Yi are rank one, the limit also has rank one, we have

Y =
⎛
⎝

0 0 0
b 0 c
d 0 1

⎞
⎠ with b = cd.

So,

S1
7(J) ⊂

⎧⎨
⎩Y =

⎛
⎝

0 0 0
b 0 c
d 0 1

⎞
⎠ with b = cd

⎫⎬
⎭ .

Re αi = Re βi

This case is analogous to the second sub-case of Case 5 since once the real parts
are the same the ordering becomes arbitrary. So, S2

7(J) = S2
5(J) and S7(J) = S1

7(J) ∪
S2

7(J).

Case 8 We consider two sub-cases.

Re αi > Re βi

The discussion of this case is analogous to the first part of Case 7:

S1
8(J) ⊂

⎧⎨
⎩Y =

⎛
⎝

0 0 0
b 0 c
d 0 1

⎞
⎠ with b = cd

⎫⎬
⎭ .

Re αi = Re βi

We have

Xi → J and Yi → Y
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where

Xi = Pi

⎛
⎝

αi 0 0
0 βi 0
0 0 βi

⎞
⎠ P−1

i and Yi = P−∗
i

⎛
⎝

ri 0 0
0 1

2 − ri
2 0

0 0 1
2 − ri

2

⎞
⎠ P∗

i

with ri ∈ [0, 1
2 ]. We have that XiY∗

i → aJ and

XiY∗
i = βiY∗

i + ri Pi

⎛
⎝

αi − βi 0 0
0 0 0
0 0 0

⎞
⎠ P−1

i

and

XiY∗
i = αiY∗

i + (
1
2

− ri

2
)Pi

⎛
⎝

0 0 0
0 βi − αi 0
0 0 βi − αi

⎞
⎠ P−1

i

so since

Pi

⎛
⎝

αi − βi 0 0
0 0 0
0 0 0

⎞
⎠ P−1

i = Xi − βi I → J

and

Pi

⎛
⎝

0 0 0
0 βi − αi 0
0 0 βi − αi

⎞
⎠ P−1

i = Xi − αi I → J

we obtain ri → a and 1
2 − ri

2 → a. This means that a = 1
2 − a

2 giving a = 1
3 . So,

S2
8(J) ⊂

⎧⎨
⎩Y =

⎛
⎝

1
3 0 0
b 1

3 c
d 0 1

3

⎞
⎠

⎫⎬
⎭ .

Case 9 We consider three sub-cases.

Re αi > Re βi ≥ Re γi

We follow the same argument as in the first part of Case 7. Thus

S1
9(J) ⊂

⎧⎨
⎩Y =

⎛
⎝

0 0 0
b 0 c
d 0 1

⎞
⎠ with b = cd

⎫⎬
⎭ .

Re αi = Re βi > Re γi

We have Xi → J with

Xi = Pi

⎛
⎝

αi 0 0
0 βi 0
0 0 γi

⎞
⎠ P−1

i and Yi = P−∗
i

⎛
⎝

ri 0 0
0 1 − ri 0
0 0 0

⎞
⎠ P∗

i
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Since det(Yi)=0 we conclude that det(Y) = 0 and therefore a = 1
2 or a = 0. Since ri ∈

[0, 1
2 ], w.l.o.g. we assume that ri → r.

1. We first consider the case a = 1
2 . We know that det(Yi − (1 − ri)I) = 0. By taking

the limit we get that det(Y − (1 − r)I) = 0 from which we deduce that r = 1
2 .

Consider (Y∗
i − ri I)Y∗

i and (Xi − αi I)Y∗
i :

(Y∗
i − ri I)Y∗

i = Pi

⎛
⎝

0 0 0
0 (1 − 2ri)(1 − ri) 0
0 0 0

⎞
⎠ P−1

i

→ (Y∗ − 1
2

I)Y∗ =
⎛
⎝

0 b∗
2 + c∗d∗ 0

0 0 0
0 0 0

⎞
⎠

(Xi − αi I)Y∗
i = Pi

⎛
⎝

0 0 0
0 (βi − αi)(1 − ri) 0
0 0 0

⎞
⎠ P−1

i

→ JY∗ =
⎛
⎝

0 1
2 0

0 0 0
0 0 0

⎞
⎠ .

Defining Qi such that

(Y∗
i − ri I)Y∗

i = (1 − 2ri)Qi

(Xi − αi I)Y∗
i = (βi − αi)Qi

we get by looking at the quotient of the (1,2) entries that

1 − 2ri

βi − αi
→ b ∗/2 + c∗d∗

1/2
= b ∗ + 2c∗d∗.

Since Re αi = Re βi we get that Re( 1−2ri
βi−αi

) = 0 and conclude that Re(b + 2cd) =
0. So,

S2,1
9 (J) ⊂

⎧⎨
⎩Y =

⎛
⎝

1
2 0 0
b 1

2 c
d 0 0

⎞
⎠ with Re(b + 2cd) = 0

⎫⎬
⎭ .
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2. Now we consider the case a = 0. Since det(Yi − ri I) = 0 and ri ∈ [0, 1
2 ] we get

r = 0. Consider (Y∗
i − (1 − ri)I)Y∗

i and (Y∗
i − (1 − ri)I)(Xi − γi I):

(Y∗
i − (1 − ri)I)Y∗

i = Pi

⎛
⎝

(2ri − 1)ri 0 0
0 0 0
0 0 0

⎞
⎠ P−1

i

→ (Y∗ − I)Y∗ =
⎛
⎝

0 c∗d∗ − b ∗ 0
0 0 0
0 0 0

⎞
⎠

(Y∗
i − (1 − ri)I)(Xi − γi I) = Pi

⎛
⎝

(2ri − 1)(αi − γi) 0 0
0 0 0
0 0 0

⎞
⎠ P−1

i

→ (Y∗ − I)J =
⎛
⎝

0 −1 0
0 0 0
0 0 0

⎞
⎠

Following a similar argument as in the previous sub-sub-case, we get that ri
αi−γi

→
b ∗ − c∗d∗ and therefore Re(b − cd) ≥ 0. So,

S2,2
9 (J) ⊂

⎧⎨
⎩Y =

⎛
⎝

0 0 0
b 0 c
d 0 1

⎞
⎠ with Re(b − cd) ≥ 0

⎫⎬
⎭

Re αi = Re βi = Re γi

Let

Xi → J and Yi → Y

where

Xi = Pi

⎛
⎝

αi 0 0
0 βi 0
0 0 γi

⎞
⎠ P−1

i and Yi = P−∗
i

⎛
⎝

ri 0 0
0 qi 0
0 0 1 − ri − qi

⎞
⎠ P∗

i .

We can assume that w.l.o.g ri → r and qi → q. The Cayley-Hamilton theorem says
that

0 = (Yi − ri I)(Yi − qi I)(Yi − (1 − qi − ri)I)

so

0 = (Y − rI)(Y − qI)(Y − (1 − q − r)I).

Looking at the diagonal entries in this matrix product we see that one of the following
4 sub-sub-cases must hold:

1. a 
= 1
3 and q = a and r = a

2. a 
= 1
3 and q = a and r = 1 − 2a
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3. a 
= 1
3 and q = 1 − 2a and r = a

4. a = q = r = 1
3

We consider these in turn.

1. Consider (Y∗
i − ri I)(Y∗

i − (1 − qi − ri)I). This gives

Pi

⎛
⎝

0 0 0
0 (qi − ri)(2qi + ri − 1) 0
0 0 0

⎞
⎠ P−1

i →
⎛
⎝

0 b ∗(3a − 1) + c∗d∗ 0
0 0 0
0 0 0

⎞
⎠

Looking at (Xi − αi I)(Y∗
i − (1 − ri − qi)I) we get that

Pi

⎛
⎝

0 0 0
0 (βi − αi)(2qi + ri − 1) 0
0 0 0

⎞
⎠ P−1

i →
⎛
⎝

0 3a − 1 0
0 0 0
0 0 0

⎞
⎠ .

Comparing the quotient as above we can deduce that

qi − ri

βi − αi
→ b ∗ + c∗d∗

3a − 1
.

Since qi and ri are real and βi − αi is imaginary we get that

Re(b + cd
3a − 1

) = 0,

so

S3,1
9 (J) ⊂

⎧⎨
⎩Y =

⎛
⎝

a 0 0
b a c
d 0 1 − 2a

⎞
⎠ with Re(b − cd

1 − 3a
) = 0

⎫⎬
⎭ .

2. Consider (Y∗
i − ri I)(Y∗

i − (1 − qi − ri)I). This gives

Pi

⎛
⎝

0 0 0
0 (qi − ri)(2qi + ri − 1) 0
0 0 0

⎞
⎠ P−1

i →
⎛
⎝

0 b ∗(3a − 1) + c∗d∗ 0
0 0 0
0 0 0

⎞
⎠ .

Looking at (Xi − γi I)(Y∗
i − ri I) we get that

Pi

⎛
⎝

0 0 0
0 (βi − γi)(qi − ri) 0
0 0 0

⎞
⎠ P−1

i →
⎛
⎝

0 3a − 1 0
0 0 0
0 0 0

⎞
⎠ .

Comparing the quotient again we can deduce that

2qi + ri − 1
βi − γi

→ b ∗ + c∗d∗

3a − 1
.

Since qi and ri are real and βi − γi is imaginary we get

Re(b − cd
1 − 3a

) = 0,
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so

S3,2
9 (J) ⊂

⎧⎨
⎩Y =

⎛
⎝

a 0 0
b a c
d 0 1 − 2a

⎞
⎠ with Re(b − cd

1 − 3a
) = 0

⎫⎬
⎭ .

3. Since qi and ri are interchangeable, this is the same as the previous sub-sub-case.
4. Because a = 1

3 we get

S3,4
9 (J) ⊂

⎧⎨
⎩Y =

⎛
⎝

1
3 0 0
b 1

3 c
d 0 1

3

⎞
⎠

⎫⎬
⎭ .

Finally,

S9(J) = S1
9(J) ∪ S2,1

9 (J) ∪ S2,2
9 (J) ∪ S3,1

9 (J) ∪ S3,2
9 (J) ∪ S3,4

9 (J).

Thus, after considering all possible limits we conclude that all S j(J) ⊂ γ (J) which
proves that ∂α(J) ⊂ γ (J). In fact, we showed that S j(J) is strictly contained in γ (J)

except when j = 5 or j = 7. Note that these are the two cases where Xi has precisely
two nonderogatory eigenvalues.

5 Proof of the Inclusion ∂α(J) ⊃ γ (J)

We want to prove that any Y ∈ γ (J) is a subgradient of α at J. We will distinguish
the cases a = 1

3 and a 
= 1
3 .

The case a = 1
3 .

First suppose that c and d are nonzero. The sequences

Pt =
⎛
⎝

−c∗d∗2 − b∗d∗
t

c∗d∗2

t3

0 −c∗d∗2 0
0 − c∗d∗

t
1
t3

⎞
⎠

P−1
t =

⎛
⎜⎝

− 1
c∗d∗2

b∗−c∗2d∗2

c∗2d∗3t
1

0 − 1
c∗d∗2 0

0 − t2

d∗ t3

⎞
⎟⎠

Jt =
⎛
⎝

t 1 0
0 t 1
0 0 t

⎞
⎠

W∗
t =

⎛
⎝

1
3

1
t − 1

c∗d∗t3

0 1
3

1
t

0 0 1
3

⎞
⎠ .

are such that Xt = Pt Jt P−1
t , Yt = P−∗

t Wt P∗
t ∈ ∂̂α(Xt),

Xt → J and Yt → Y =
⎛
⎝

a 0 0
b a c
d 0 a

⎞
⎠ with a = 1

3
.
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Here t is real and positive and decreases to zero. If either c or d is zero, we simply
replace it where it occurs in these sequences by t. Thus, as desired, we created
a sequence for a = 1

3 and arbitrary b , c d for which Yt ∈ ∂̂α(Xt) converges to the
specified Y ∈ γ (J).

The case a 
= 1
3 .

We create a sequence for arbitrary a ∈ [0, 1
2 ) and a 
= 1

3 (we will discuss the case a = 1
2

later) and c, d arbitrary and Re w ≥ 0:

P−1
t =

⎛
⎝

1
t

1
t

c∗
(3a−1)t

t 1
t t

t d∗
(1−3a)t

1
t

⎞
⎠ ,

Jt =
⎛
⎝

t 1 0
0 t 0
0 0 t + it

⎞
⎠ ,

W∗
t =

⎛
⎝

a + t w∗ + t 0
0 a + t 0
0 0 1 − 2a − 2t

⎞
⎠ (13)

are such that Xt = P−1
t Jt Pt, Yt = P∗

t Wt P−∗
t ∈ ∂̂α(Xt),

Xt → J and Yt → Y =
⎛
⎝

a 0 0
b a c
d 0 a

⎞
⎠

where b = w + cd
1−3a , with t positive real, converging to 0. We omit the formula for Pt

since it is complicated. In the case where a = 1
2 we can take a similar sequence with

W∗
t =

⎛
⎝

1
2 − t w∗ + t 0

0 1
2 − t 0

0 0 2t

⎞
⎠ .

We then get that Xt → J and Yt → Y as above but with a = 1
2 . It is necessary to

consider this separately since in equation (13) if a = 1
2 the bottom right entry would

be negative and therefore not a regular subgradient. Since b = w + cd
1−3a and Re w ≥

0 we created a sequence for a 
= 1
3 and arbitrary b , c, d satisfying Re(b − cd

1−3a ) for

which Yt ∈ ∂̂α(Xt) converges to the specified Y ∈ γ (J).
This proves the inclusion ∂α(J) ⊃ γ (J) and completes the proof of Theorem 5.

6 The Horizon Subgradients

We conclude our subdifferential analysis for the spectral abscissa at J by giving
necessary and sufficient conditions for the horizon subgradients. Note that the
expression for ∂∞α(J) is simpler than the expression for ∂α(J) because there is no
inequality constraint on the matrix entries.
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Theorem 6

∂∞α(J) =
⎧⎨
⎩

⎛
⎝

0 0 0
b 0 c
d 0 0

⎞
⎠

⎫⎬
⎭ .

Proof The necessary conditions for the horizon subgradient are proved by applying
Theorem 1 so all we need to do is establish sufficient conditions. Consider the
following sequences of matrices:

Pt =
⎛
⎝

−c∗d∗2 − b∗d∗
t

c∗d∗2

t3

0 −c∗d∗2 0
0 − c∗d∗

t
1
t3

⎞
⎠

P−1
t =

⎛
⎜⎝

− 1
c∗d∗2

b∗−c∗2d∗2

c∗2d∗3t
1

0 − 1
c∗d∗2 0

0 − t2

d∗ t3

⎞
⎟⎠

Jt =
⎛
⎝

t 1 0
0 t 1
0 0 t

⎞
⎠

W∗
t =

⎛
⎝

1
3

1
t2 − 1

c∗d∗t4

0 1
3

1
t2

0 0 1
3

⎞
⎠ .

They have the property that Xt = Pt Jt P−1
t → J and with Yt = P∗

t Wt P−∗
t ∈ ∂α̂(Xt),

we have

tYt →
⎛
⎝

0 0 0
b 0 c
d 0 0

⎞
⎠

for any choice of b , c 
= 0, d 
= 0 and t positive real, converging to 0. If either c or d is
zero change it to t in the sequence above. ��

7 Concluding Remarks

The subgradient analysis of Sections 4 and 5, establishing necessary and sufficient
conditions for Y to be a subgradient of the spectral abscissa at the 3 × 3 derogatory,
defective matrix J, was quite complicated, suggesting that a general analysis for
derogatory, defective matrices may be difficult. However, we hope that the detailed
analysis presented for this case may show the way forward for obtaining a more
general result.
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