
Digital Object Identifier (DOI) 10.1007/s10107990060a

Math. Program. 85: 525–540 (1999)  Springer-Verlag 1999

Madhu V. Nayakkankuppam·Michael L. Overton

Conditioning of semidefinite programs

Received November 26, 1995 / Revised version received November 1, 1998
Published online February 25, 1999

Abstract. This paper studies the conditioning of semidefinite programs by analyzing the effect of small
perturbations in problem data on the solution. Under the assumptions of strict complementarity and non-
degeneracy, an explicit bound on the change in the solution is derived in a primal-dual framework, using
tools from the Kantorovǐc theory. This approach also quantifies the size of permissible perturbations. We
include a discussion of these results for block diagonal semidefinite programs, of which linear programming
is a special case.
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1. Introduction and notation

Our aim is to study the conditioning of semidefinite programs (SDP) with respect to
small perturbations,i.e. to quantify the change in the solution of a semidefinite program
induced by a sufficiently small perturbation in the problem data.

LetSn denote the space of real, symmetricn× n matrices. The usual inner product
on this space, denoted by•, is defined byA • B = trace(AB) = ∑

i, j ai j bi j . We
consider semidefinite programs in the following standard form:

min C • X s.t. Ak • X = bk, k = 1,2, . . . ,m ; X � 0, (1)

whereC, Ak (k = 1,2, . . . ,m) andX all belong toSn, bk’s are scalars, and byX � 0,
we mean thatX lies in the closed, convex cone of positive semidefinite matrices. SDP
enjoys a duality theory akin to that for linear programming. The dual of (1) is:

max bT y s.t.
m∑

k=1

ykAk + Z = C; Z � 0, (2)

whereZ ∈ Sn is a positive semidefinite dual slack variable. The following Assumptions
apply throughout the paper.

Assumption 1. The matricesAk (k = 1, . . . ,m) are linearly independent, i.e. they
span anm–dimensional subspace ofSn.
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Assumption 2. The Slater condition holds for both the primal and the dual programs,
i.e. there exists a primal feasibleX and a dual feasible(y, Z) with X and Z strictly
positive definite.

Under these assumptions, it is well known that (optimal) solutions1 exist to both
the primal and the dual problems, and that the (optimal) objective values of both the
programs are equal. Thus, a triple(X0, y0, Z0) solves (1) and (2) if and only ifX0 is
primal feasible,(y0, Z0) is dual feasible and the complementarity conditionX0•Z0 = 0
is satisfied. Since for positive semidefinite matricesX0 and Z0, X0 • Z0 = 0 if and
only if X0Z0 = 0, the complementarity condition implies thatX0 and Z0 commute,
and hence share an orthonormal system of eigenvectors, sayQ0. Clearly, this results in
rank(X0)+ rank(Z0) ≤ n.

Definition 1. A primal solutionX0 and a dual solution(y0, Z0) are said to satisfy strict
complementarity if rank(X)+ rank(Z) = n.

Let us denote the eigenvalues ofX0 and ofZ0 by

λ0 = [λ1
0, . . . , λ

n
0]T ≥ 0 and ω0 = [ω1

0, . . . , ω
n
0]T ≥ 0 (3)

respectively. Writing the primal solution asX0 = Q0Diag(λ0)QT
0 and the dual slack

solution asZ0 = Q0Diag(ω0)QT
0 , we can restate the complementarity condition

X0Z0 = 0 asλT
0ω0 = 0, and strict complementarity asλ0 + ω0 > 0. We assume

without loss of generality that the components ofλ0 (of ω0) are arranged in nonincreas-
ing (nondecreasing) order,i.e.λ1

0 ≥ . . . ≥ λn
0 andω1

0 ≤ . . . ≤ ωn
0.

For the sake of completeness, we introduce the nondegeneracy definitions from [1].
Although the nondegeneracy conditions in [1] are developed in terms of the tangent
space to the positive semidefinite cone, an equivalent linear algebra characterization
(proved in [1]) is more amenable to our treatment here, and we use this as the definition
of nondegeneracy. Since we assume that strict complementarity holds, we give the
nondegeneracy definitions under this assumption, simplifying the definitions slightly.

Definition 2. Let X0 and(y0, Z0) be primal and dual solutions respectively, satisfying
strict complementarity. Further, letr = rank(X0) and letQ0 be a matrix whose columns
form a common set of orthonormal eigenvectors forX0 and Z0. Partition Q0 into Q1

0
and Q2

0, then× r and then× (n− r) matrices corresponding to the nonzero and the
zero eigenvalues ofX0 (i.e. the zero and the nonzero eigenvalues ofZ0) respectively.
Then,
(i) X0 is said to be primal nondegenerate if the matrices

Bk =
[
(Q1

0)
T AkQ1

0 (Q1
0)

T AkQ2
0

(Q2
0)

T AkQ1
0 0

]
, k = 1,2, . . . ,m

are linearly independent inSn, and
(ii) (y0, Z0) is said to be dual nondegenerate if the matrices

Dk = (Q1
0)

T AkQ1
0 k = 1,2, . . . ,m

spanSr , the space of symmetricr × r matrices.

1 Henceforth, we will usesolutionto meanoptimal solution.
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We add the following third assumption.

Assumption 3. The primal (1) and the dual(2) programs have solutionsX0 and
(y0, Z0) satisfying strict complementarity, primal nondegeneracy and dual nondegen-
eracy.2

These assumptions guarantee that the primal and the dual solutions are unique [1].
It is notationally convenient to handle symmetricn× n matrices by mapping them

onto vectors of lengthn(n+1)/2, so letvec : Sn −→ <n(n+1)/2 be an isometry,3 i.e.for
all A, B ∈ Sn, we haveA • B = (vecA)T(vecB). Then, the primal and dual equality
constraints can be written as

A vecX = b; AT y+ vecZ = vecC,

whereA ∈ <m×n(n+1)/2 is a matrix whosekth row is(vecAk)
T , andb= [b1, . . . ,bm]T ∈

<m. Now, the optimality conditions reduce to:

A vecX = b ; X � 0 (primal feasibility) (4)

AT y+ vecZ = vecC ; Z � 0 (dual feasibility) (5)

X Z = 0 (complementarity). (6)

It is easy to show that for two symmetric, positive semidefinite matricesX0 and Z0,
the conditionX0Z0 = 0 is equivalent toX0Z0 + Z0X0 = 0. Hence, solving (4) – (6)
reduces to finding a root of the function

F(X, y, Z) ≡
 A vecX − b

AT y+ vec(Z −C)
1
2vec(X Z+ Z X)

 (7)

such thatX � 0 andZ � 0.
Let I denote the identity matrix (the order being evident from context), and let

mat : <n(n+1)/2 −→ Sn be the inverse ofvec. We use~ to denote the symmetrized
Kronecker product introduced in [2],i.e. given M, N ∈ Sn, M ~ N denotes the linear
operator whose action on a vectorh ∈ <n(n+1)/2 is given by

(M ~ N) h = 1

2
vec (M (mat h) N + N (mat h)M) .

RegardingF as a map from<n(n+1)+m to itself, the Jacobian ofF is easily seen to be

J(X, y, Z) =
 A 0 0

0 AT I ~ I
Z ~ I 0 X ~ I

 . (8)

We conclude this section with some more notation. For any two vectorsx =
[x1, . . . , xn]T and y = [y1, . . . , ym]T , the pair(x, y) is used to denote the vector

2 Future references tonondegeneracywill mean both primal and dual nondegeneracy.
3 For instance, we could takevec to be the operator that stacks the columns in the lower triangular part of

a matrix into a vector, multiplying the offdiagonal elements by
√

2.
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[x1, . . . , xn, y1, . . . , ym]T . Unless explicitly indicated otherwise, we use the Euclidean
norm ‖·‖ for vectors, and the induced 2-norm for matrices. The Frobenius norm of
a matrix is denoted by‖·‖F . For a real, symmetric matrixA, we have‖A‖F = ‖vecA‖ =√

A • A. We letu = (X, y, Z) stand for an element in the solution spaceSn×<m×Sn

equipped with the norm

‖u‖ = ‖(vecX, y, vecZ)‖ =
(
‖X‖2F + ‖y‖2+ ‖Z‖2F

)1/2
.

We denote byN(u, ρ), an open ball of radiusρ centered atu, and byN(u, ρ), its closure.
By Lipγ (N(u, ρ)), we mean the class of all functions that are Lipschitz continuous in
N(u, ρ), γ being the Lipschitz constant using the 2-norm. We say that a function is
uniformlyLipschitz continuous if it is Lipschitz continuous at every point in its domain
with the same Lipschitz constant. Finally, we use the compact notation[A,b,C] to
denote the SDP’s in (1) and (2).

2. Perturbation analysis for SDP

The two classical, qualitative notions of stability for a general mathematical program-
ming problem are stability with respect to the optimal value, and stability with respect
to the solution set [6]. Our analysis quantifies the latter for an SDP satisfying the as-
sumptions, by explicitly bounding the change in the solution for a sufficiently small
perturbation in the problem data. Consider a perturbation of the problem parametersAk,
b, andC in (1). In what follows,

Ã = A +1A, b̃= b+1b, and C̃ = C+1C (9)

all denote perturbations in the original problem (1). Here,1C is symmetric, and1A is
a matrix whosekth row is (vec1Ak)

T , with 1Ak symmetric. Correspondingly, (7) for
the perturbed system becomes

F̃(u) ≡ F̃(X, y, Z) ≡
 Ã vecX − b̃

ÃT
y+ vec(Z − C̃)

1
2vec(X Z+ Z X)

 = 0. (10)

and the Jacobian of̃F (see (8)) becomes

J̃(u) =
 Ã 0 0

0 ÃT
I ~ I

Z ~ I 0 X ~ I

 . (11)

We denote the solution to the original problem byu0 = (X0, y0, Z0) and the solution
to the perturbed problem bỹu0 = (X̃0, ỹ0, Z̃0).

We now state (without proof) a finite dimensional version of the Kantorovič theorem,
which is central to our perturbation analysis.
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Theorem 1 ([5], Ch. XVIII, Theorem 6). Letρ0 > 0, u0 ∈ <p, G : <p −→ <p, and
assume thatG is continuously differentiable inN(u0, ρ0). Assume for a vector norm
and the induced operator norm that the JacobianG′ ∈ Lipγ (N(u0, ρ0)) with G′(u0)

nonsingular, and let

β =
∥∥∥G′(u0)

−1
∥∥∥ , η =

∥∥∥G′(u0)
−1 G(u0)

∥∥∥ , α = βγη, ρ = 1−√1− 2α

βγ
.

If (a) α ≤ 1
2, and (b)ρ ≤ ρ0, then

(i) G has a unique zero, saỹu0, in N(u0, ρ), and
(ii) Newton’s method with unit steps, started atu0, converges to this unique zeroũ0.

The following corollary is immediate.

Corollary 1. Let the conditions of Theorem 1 be satisfied. Ifα < 1/2, thenG′(ũ0) is
nonsingular.

Proof. Since the conditions of Theorem 1 are satisfied,G must have a zero, saỹu0,
such that

‖ũ0− u0‖ ≤ ρ = 1−√1− 2α

βγ
(12)

≤ 2α

βγ
when 0≤ α ≤ 1/2 (13)

<
1

βγ
whenα < 1/2

so that ∥∥G′(ũ0)− G′(u0)
∥∥ ≤ γ ‖ũ0− u0‖ < 1

β
= 1∥∥G′(u0)−1

∥∥ .
The Banach Lemma (Lemma 5 in Appendix A) now implies thatG′(ũ0) is non-
singular.

ut
Next, we state two preliminary lemmas needed for the perturbation analysis.

Lemma 1 ([2], Theorem 1).Let [A,b,C] define an SDP satisfying the Assumptions.
Then, the Jacobian at the solution,J(u0), is nonsingular.

See [2] for a proof. Conversely, it is also true that if an SDP has a solutionu0 such that
J(u0) is nonsingular, then strict complementarity and nondegeneracy hold atu0 [4].

Lemma 2. Let [A,b,C] define any SDP, not necessarily satisfying the Assumptions.
Then, the JacobianJ(u) associated with it is uniformly Lipschitz continuous, with 1
being a global Lipschitz constant.
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Proof. Let u1 = (X1, y1, Z1) be any fixed point inSn × <m × Sn and let v =
(v1, v2, v3) ∈ <n(n+1)+m, with v1, v3 ∈ <n(n+1)/2. Then, for anyu2 = (X2, y2, Z2) ∈
Sn ×<m× Sn, we have

‖J(u2)− J(u1)‖ = max‖v‖=1
‖{(Z2− Z1)~ I } v1+ {(X2 − X1)~ I } v3‖

≤ max‖v‖=1
‖{(Z2− Z1)~ I } v1‖ + ‖{(X2− X1)~ I } v3‖

≤ max‖v1‖=1
‖{(Z2− Z1)~ I } v1‖ + max‖v3‖=1

‖{(X2− X1)~ I } v3‖
= ‖(Z2− Z1)~ I‖ + ‖(X2− X1)~ I‖
= ‖Z2− Z1‖ + ‖X2− X1‖ (from Lemma 3, Appendix A)

≤ ‖u2− u1‖ ,
thus concluding the proof.

ut
ForanSDP[A,b,C]satisfyingtheAssumptionsandwhosesolution isu0= (X0, y0, Z0),
and for its perturbation given in (9), we define the following quantities which will be
used in the next theorem.

β0 :=
∥∥∥J(u0)

−1
∥∥∥ (see (8)),

β1 := ‖K‖ whereK consists of the firstm+ n(n+1)
2 columns ofJ(u0)

−1,

and

δ0 := min

(
min

1≤i≤n

{
λi

0 : λi
0 > 0

}
, min

1≤i≤n

{
ωi

0 : ωi
0 > 0

})
(see (3))

Theorem 2. Let u0 be the primal–dual solution to the SDP[A,b,C] satisfying the
Assumptions, and let[Ã, b̃, C̃] = [A +1A,b+1b,C+1C]. Let

ε0 := ‖1A‖ ‖(vecX0, y0)‖ + ‖(1b, vec1C)‖ .
If

‖1A‖ ≤ 1

2β1
, and (14)

ε0 < min

(
σ − 1

2σ2β0β1
,
δ0

2σβ1

)
for some1< σ ≤ 2, (15)

then
(i) the SDP defined by[Ã, b̃, C̃] has a solution, saỹu0, which satisfies

‖ũ0− u0‖ ≤ σβ1ε0

1− β1 ‖1A‖ , (16)

(ii) the solution to[Ã, b̃, C̃] is unique.
(iii) Newton’s method with unit steps applied tõF, started atu0, converges tõu0
quadratically.
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Proof. To prove (i), we proceed in two steps. First, we use Kantorovič theorem to show
that F̃ has a root̃u0 that satisfies the bound in (16). Second, we show that this root
satisfies the positive semidefiniteness constraint, and hence is a solution to the SDP.

To use the Kantorovič theorem in the first step, we note the nonsingularity of the
JacobianJ(u0) and the Lipschitz continuity ofJ(·) with Lipschitz constantγ = 1
(Lemma 1 and Lemma 2). Since

1J := J̃(u0)− J(u0) =
1A 0 0

0 1AT 0
0 0 0

 , (17)

we have ∥∥∥J(u0)
−11J

∥∥∥ ≤ β1 ‖1A‖ ≤ 1

2
(from (14)) (18)

so that by the Banach Lemma (Lemma 5, Appendix A),J̃(u0) is nonsingular with

β =
∥∥∥ J̃(u0)

−1
∥∥∥ ≤ 2β0. (19)

Let

η =
∥∥∥ J̃(u0)

−1F̃(u0)

∥∥∥ and α = βη. (20)

We need only verify assumption (a) of Theorem 1,i.e. thatα ≤ 1
2; assumption (b) then

follows trivially from the fact that the Lipschitz constant is global. We have

F̃(u0) =
 (A +1A)vecX0− (b+1b)
(A +1A)T y0+ vecZ0− vec(C+1C)

1
2vec(X0Z0+ Z0X0)



=
 (1A)vecX0−1b
(1A)T y0− vec1C

0

 , (21)

so that∥∥∥J(u0)
−1F̃(u0)

∥∥∥ ≤ β1 (‖1A‖ ‖ (vecX0, y0) ‖ + ‖(1b, vec1C)‖) = β1ε0. (22)

Therefore, we obtain the estimate

η =
∥∥∥ J̃(u0)

−1F̃(u0)

∥∥∥
=
∥∥∥∥(I + J(u0)

−11J
)−1

J(u0)
−1F̃(u0)

∥∥∥∥
≤ β1ε0

1− ∥∥J(u0)−11J
∥∥ (from (22) and Lemma 5, Appendix A) (23)

≤ 2β1ε0 (from (18)) (24)
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and from (19), (24) and (15), we conclude that

α = βη ≤ 4β0β1ε0 <
2(σ − 1)

σ2 ≤ 1

2
. (25)

Sinceα < 1
2, the hypotheses of the Kantorovič theorem hold, whence we can conclude

that F̃ has a unique zerõu0, with

‖u0− ũ0‖ ≤ 1−√1− 2α

β
. (26)

We have

σ2α− 2σ + 2< 0 (from (25))

⇒ σ2α2− 2σα+ 2α ≤ 0 (sinceα = βη ≥ 0)

⇒ 1− σα ≤ √1− 2α,

or equivalently,

1−√1− 2α

β
≤ σα
β
= ση,

so that, using (26),

‖u0 − ũ0‖ ≤ ση. (27)

Combining this with (23) and (18) yields (16).
To show that this root is actually a solution to the SDP, we need to establish that

X̃0 � 0 andZ̃0 � 0. To see this, note that(∥∥X̃0 − X0
∥∥2

F + ‖ỹ0− y0‖2+
∥∥Z̃0− Z0

∥∥2
F

) 1
2 = ‖ũ0− u0‖
≤ 2σβ1ε0 (from (27) and (24))

< δ0 (from (15))

so that ∥∥X̃0− X0
∥∥ < δ0 and

∥∥Z̃0− Z0
∥∥ < δ0. (28)

Recalling thatλ0 andω0 were defined in (3), let̃λ0 (ω̃0) be the vector of eigenvalues of
X̃0 (of Z̃0), arranged in nonincreasing (nondecreasing) order. The following argument
shows that̃X0 � 0. For any 1≤ j ≤ n,

λ
j
0 > 0⇒ λ̃

j
0 > 0 (from (28) and Lemma 4, Appendix A)

and

λ
j
0 = 0⇒ ω

j
0 > 0 (strict complementarity ofX0 andZ0)

⇒ ω̃
j
0 > 0 (from (28) and Lemma 4, Appendix A)

⇒ λ̃
j
0 = 0 (complementarity of̃X0 andZ̃0).
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A similar argument shows that̃Z0 � 0. Thus,ũ0 = (X̃0, ỹ0, Z̃0) is indeed a solution to
the perturbed SDP. This concludes the proof of (i) in the theorem.

The proof of (ii) in the theorem is an immediate consequence of Corollary 1: since
J̃(ũ0) is nonsingular, the perturbed problem[Ã, b̃, C̃] also satisfies strict complemen-
tarity and nondegeneracy [4], which in turn guarantees that the solutionũ0 is unique [1].

The proof of (iii) is a consequence of the second conclusion of Theorem 1, combined
with the nonsingularity of̃J(ũ0).

ut
See [2] for more on Newton’s method in this context.

The following corollary establishes a bound on therelativeerror in the solution of
a perturbed SDP, and thus introduces the notion of acondition numberfor semidefinite
programs.

Corollary 2. Let the conditions of Theorem 2 hold, and let1u0 = ũ0− u0. Then,

‖1u0‖
‖u0‖ ≤

σ ‖K‖ ‖L‖
1− ‖K‖ ‖1A‖

(‖1A‖ ‖(vecX0, y0)‖
‖(b, vecC)‖ + ‖(1b, vec1C)‖

‖(b, vecC)‖
)
, (29)

whereK (respectivelyL) consists of the firstm+ n(n + 1)/2 columns (respectively
rows) ofJ(u0)

−1 (respectivelyJ(u0)).

Proof. Observe thatu0 satisfiesLu0 = (b, vecC), so that

‖L‖ ‖u0‖ ≥ ‖(b, vecC)‖ .
The result follows by combining this inequality with (16).

ut
Thus,σ ‖K‖ ‖L‖ may be viewed as a condition number. In the special case1A = 0,
we haveβ = β0, the inequality in (15) can be relaxed to

ε0 < min

(
2(σ − 1)

σ2β0β1
,
δ0

σβ1

)
(1< σ ≤ 2)

and (29) reduces to

‖1u0‖
‖u0‖ ≤ σ ‖K‖ ‖L‖

(‖(1b, vec1C)‖
‖(b, vecC)‖

)
.

3. Block diagonal SDP and linear programs

Several practical problems (for instance, linear matrix inequalities in control theory and
problems from optimal structural design) have an inherent block diagonal structure,
when formulated as semidefinite programs. In this section, we consider semidefinite
programming over the space of real, symmetric, block diagonal matrices. Then, we
discuss linear programming as a special case.
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3.1. Block diagonal semidefinite programs

Given a positive integer vectorq = [q1, . . . ,qp] with n =∑p
i=1 qi , letBq denote the

space of all real, symmetric,n × n block diagonal matrices whosei th diagonal block
is of sizeqi . The dimension of this space isg = ∑p

i=1 qi (qi + 1)/2, and we define
vec to be an isometry fromBq to <g. We refer to thei th diagonal block of a matrix
X ∈ Bq asX(i), and we use the notation

∏p
i=1 X(i) to denote the matrixX. The primal

and the dual semidefinite programs can be formulated over this space of block diagonal
matrices, just as in (1) and (2), but withSn replaced byBq.

The nondegeneracy conditions of [1] can be extended in a straightforward way toBq

via tangent and normal spaces to the cone of positive semidefinite matrices inBq (see
Appendix B). As in Section 1, we provide an equivalent linear algebra characterization
of nondegeneracy here, assuming that strict complementarity holds.

Definition 3. Let X0 and(y0, Z0) be primal and dual solutions respectively, satisfying
strict complementarity. Further, letQ0(i) = [Q1

0(i) Q2
0(i)] be a matrix whose columns

form a set of orthonormal eigenvectors ofX0(i) and Z0(i), with Q1
0(i) and Q2

0(i)
corresponding to the nonzero and the zero eigenvalues ofX0(i) (i.e. the zero and the
nonzero eigenvalues ofZ0(i)) respectively. Then,
(i) X0 is said to be primal nondegenerate if the matrices

Bk =
p∏

i=1

[
Q1

0(i)
T Ak(i)Q1

0(i) Q1
0(i)

T Ak(i)Q2
0(i)

Q2
0(i)

T Ak(i)Q1
0(i) 0

]
, k = 1,2, . . . ,m

are linearly independent inBq, and
(ii) (y0, Z0) is said to be dual nondegenerate if

Dk =
p∏

i=1

Q1
0(i)

T Ak(i)Q1
0(i) , k = 1,2, . . .m

spanBr , wherer i = rank(X0(i)).

All the results in Section 2 hold verbatim in the block diagonal case, but with the
understanding that the operatorvec, its associated symmetrized Kronecker product~,
and the nondegeneracy conditions are interpreted as just described. The functionF now
maps<2g+m to itself, the JacobianJ has dimension 2g+m, while K (respectivelyL)
consists of the firstg+m columns (respectively rows) ofJ(u0)

−1 (respectivelyJ(u0)).

3.2. Linear programming

In the caseq = [1, . . . ,1] with g = n, the Ak’s, C andX aren× n diagonal matrices,
and SDP over the spaceBq reduces to linear programming (LP). It is interesting to see
what our perturbation analysis for block diagonal SDP’s yields for LP. ThenA ∈ <m×n

is the matrix whosekth row is (vecAk)
T , and lettingc, x, z ∈ <n stand forvecC, vecX

andvecZ respectively, we get the primal linear program

min cT x s.t. Ax = b; x ≥ 0, (30)



Conditioning of semidefinite programs 535

and its dual

max bT y s.t. AT y+ z= c; z≥ 0. (31)

Our assumptions here are the same as those in Section 1. Assumption 1 implies thatA has
full row rank. It can be verified (see Appendix C) that the nondegeneracy assumption
(Assumption 3) implies that the primal solution, rearranged asx0 = (x1

0, x
2
0), has

exactlym strictly positive components (denoted byx1
0), and, that if we rearrange the

columns ofA as [A1 A2] with A1 andA2 corresponding tox1
0 and x2

0 respectively,
thenA1 is nonsingular. Writingz0 = (z1

0, z
2
0) accordingly, we havez1

0 = 0, and by strict
complementarity,z2

0 > 0. Therefore,

J(u0) =


A1 A2 0 0 0

0 0 AT
1 I 0

0 0 AT
2 0 I

0 0 0 Diag(x0) 0

0 Diag(z2
0) 0 0 0

 .

Thus, Theorem 2 holds withβ1 = ‖K‖, with

K =


A−1

1 0 0

0 0 0

0 A−T
1 0

0 0 0

0 −A2A−T
1 I

 .

However, under the same assumptions, it is possible to use a simple linear algebra
argument4 to obtain a perturbation bound. Rearrangingc as(c1, c2) and defining

R=
 A1 0 0

0 AT
1 0

0 AT
2 I

 , (32)

the solution to the LP is given byR (x1
0, y0, z2

0) = (b, c1, c2), andx2
0 = 0, z1

0 = 0. Since
this holds for any sufficiently small perturbation (so that the basis does not change), the
standard perturbation result for square, nonsingular linear systems [13, p. 26] gives

‖1u0‖ =
∥∥∥(1x1

0,1y0,1z2
0)

∥∥∥
≤

∥∥R−1
∥∥

1− ∥∥R−1
∥∥ ‖1R‖ (‖1R‖ ‖(x0, y0)‖ + ‖(1b,1c)‖) . (33)

Here,1R is the matrix obtained by replacingA1, A2 and I in (32) by1A1, 1A2
and 0 respectively. Since‖1R‖ = ‖1A‖ and

∥∥R−1
∥∥ = ‖K‖, the bound obtained in

Theorem 2 via the Kantorovič theory specializes, except for the factor ofσ , to the one
in (33) obtained by the linear algebra approach.

4 The authors thank an anonymous referee for this observation.
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4. Concluding remarks

An alternative way to formulate the problem is to introduce a perturbation parametert
(assumed to be a scalar, for simplicity), and study the solutionu(t) = (X(t), y(t), Z(t))
of the parametrized SDP[A(t),b(t),C(t)], whereA(·), b(·) andC(·) are assumed to be at
leastC1, andt = t0 corresponds to the original problem. We may now regardF defined
in (7) to beF(t, X, y, Z), and replaceA,b,C in the right hand side of (7) by the functions
A(t),b(t),C(t) respectively. In view of Lemma 1, the implicit function theorem states
thatu′(t) is well defined and continuous in some neighborhood(t0− ε0, t0+ ε0) around
t0, and allows us to compute the derivative of the solution att0 as

u′(t0) = −J(u0)
−1F′(t0, X0, y0, Z0), (34)

where the prime notation (′) stands for the derivative with respect tot. Indeed, we can
conclude that∀ δ > 0, ∃ ε(δ) > 0 such that

‖u(t)− u(t0)‖ ≤
(∥∥u′(t0)

∥∥+ δ) | t − t0 | ∀t ∈ (t0 − ε(δ), t0+ ε(δ))
Thus,

∥∥u′(t0)
∥∥ can be considered to be an asymptotic error bound.5 However, the

implicit function theorem does not provide a way to estimateε(δ). On the other hand,
the Kantorovǐc approach uses1A = A(t)−A(t0),1b= b(t)−b(t0) and1C = C(t)−
C(t0) to provide explicit bounds both on‖ũ0− u0‖ (see (16)) and on the permissible
perturbations (see (14) and (15)), without any assumptions on the functionsA(·),b(·),
andC(·). In the limiting caset −→ t0, we haveε0 −→ 0, so that we may letσ −→ 1
in (15). Then, from (20) and (21), the quotientη/ | t − t0 |−→

∥∥u′(t0)
∥∥, whereu′(t0)

is given in (34). Hence, the Kantorovič bound in (27) divided by| t − t0 | approaches∥∥u′(t0)
∥∥.

We now make a few remarks about the assumptions made. Assumption 1 is a mere
convenience. If theAk are linearly dependent, then the equality constraints are either in-
consistent or redundant. Assumption 2 (the Slater condition) guarantees that the problem
remains well–posed under small perturbations. A problem violating the Slater condi-
tion is ill–posed in the sense that it could become infeasible under an arbitrarily small
perturbation. Assumption 3 (the nondegeneracy and strict complementarity condition),
which guarantees a unique solution to the SDP, is crucial for the application of the
Kantorovǐc theory. In the absence of further qualifications on the data and the nature of
the perturbation, the solution set may not be outer semicontinuous [12, Def. 5.4] if the
Slater condition is violated, and may not be inner semicontinuous [12, Def. 5.4] if the
nondegeneracy condition is violated. Note that Assumption 3 is generically satisfied [1].

For linear programming, in the special case of perturbations tob alone (i.e.1A = 0,
1c= 0) and under the assumption that the perturbed problem has a nonempty solution
set, Mangasarian and Shiau [7] bound the distance between the solution sets of the
original and the perturbed problems in terms of the perturbation inb. Robinson [11]
uses Hoffman’s lemma for linear inequalities to bound the distance between the solution
set of a linear program and a fixed point in the solution space. Renegar [9,10] introduces
the notion of the distance to ill–posedness, and derives error bounds for a general class

5 This notion was suggested by an anonymous referee.
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of mathematical programs in the setting of reflexive Banach spaces. However, a feature
common to all these results (including ours) is that they require some form of knowledge
of the solution (or the active set at the solution) of the original program. In this sense,
computing the condition number of an LP or SDP involves at least as much work as
solving the program itself.

Appendices

A. Miscellaneous results

Lemma 3 ([2], Lemma 2). For commuting real, symmetric matricesM and N, let
α1, . . . , αn and β1, . . . , βn denote the eigenvalues ofM and N respectively, with
v1, . . . , vn being a common basis of orthonormal eigenvectors. Then(n+ 1)/2 eigen-
values ofM ~ N are given by

1

2

(
αiβ j + βiα j

)
, 1≤ i ≤ j ≤ n,

with the corresponding set of orthonormal eigenvectors{
vec(viv

T
i ) if i = j

1√
2

vec(viv
T
j + v j v

T
i ) if i < j

}
.

The proof is straightforward.

Lemma 4. Let A and A+ E be real, symmetric matrices with eigenvaluesλ1 ≥ . . . λn

andµ1 ≥ . . . ≥ µn respectively. Then

| λi − µi |≤ ‖E‖ , i = 1, . . . ,n.

See, for instance, [8, p. 58] for a proof.

Lemma 5 (Banach Lemma).Let A be a square nonsingular matrix and letÃ= A+E
be a perturbation ofA. If

∥∥A−1E
∥∥ < 1, thenÃ is nonsingular, and∥∥∥ Ã−1
∥∥∥ ≤ ∥∥A−1

∥∥
1− ∥∥A−1E

∥∥ .
See [14, p. 118] for a proof.

B. Nondegeneracy for block diagonal SDP

Here, we extend the nondegeneracy definitions of [1] to the block diagonal case, without
assuming strict complementarity.

ConsiderBq, the space of real, symmetric block diagonal matrices with block
structureq = [q1, . . . ,qp]. Recall that we refer to thei th diagonal block of a matrix
X ∈ Bq by X(i), and that we use the notation

∏p
i=1 X(i) to denote the matrixX. Given
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a positive integer vectorr = [r 1, . . . , r p], letMr be the smooth manifold of matrices
in Bq whosei th block is of rankr i (i = 1, . . . , p). Consider SDP over the spaceBq,
and letX ∈ Mr be primal feasible. LetQ(i) = [Q1(i) Q2(i)] (i = 1, . . . , p) be
an orthonormal set of eigenvectors ofX(i), such thatQ1(i) ∈ <qi×r i

and Q2(i) ∈
<qi×(qi−r i ) are eigenvectors corresponding to the nonzero and the zero eigenvalues of
X(i) respectively. Then, the tangent space toMr at X is given by [3]

TX(Mr ) =
{ p∏

i=1

Q(i)

[
Ui Vi

VT
i 0

]
Q(i)T : Ui ∈ Sr i

, Vi ∈ <r i×(qi−r i )

}
.

Definition 4. X ∈ Bq is primal nondegenerate if it is primal feasible andTX(Mr ) +
N = Bq, where N is the orthogonal complement (with respect to•) of
Span(A1, . . . , Am) in Bq.

Similarly, let s = [s1, . . . , sp] be a positive integer vector, and letMs be the smooth
manifold of matrices inBq whosei th block is of ranksi . Let (y, Z) be dual feasible with
Z ∈Ms, and letP(i) = [P1(i) P2(i)] be an orthonormal set of eigenvectors ofZ(i)
such thatP1(i) ∈ <qi×(qi−si ) andP2(i) ∈ <qi×si

are eigenvectors corresponding to the
zero and the nonzero eigenvalues ofZ(i) respectively. Then, the tangent space toMs

at Z is given by

TZ(Ms) =
{ p∏

i=1

P(i)

[
0 Vi

VT
i Wi

]
P(i)T : Vi ∈ <(qi−si )×si

, Wi ∈ Ssi

}
.

Definition 5. (y, Z) ∈ <m × Bq is dual nondegenerate if it is dual feasible and
TZ(Ms)+ Span(A1, . . . , Am) = Bq.

The following two theorems relate the nondegeneracy definitions given above with an
equivalent linear algebra characterization. The proofs are along the same lines as in [1],
and are omitted.

Theorem 3. Let X ∈ Mr be primal feasible. IfX is primal nondegenerate, then the
following dimensionality condition necessarily holds:

p∑
i=1

(qi − r i )(qi − r i + 1)/2≤
( p∑

i=1

qi (qi + 1)/2

)
−m.

Further, let Q(i) = [Q1(i) Q2(i)] be as defined above, withQ1(i) and Q2(i) corres-
ponding to the nonzero and zero eigenvalues ofX(i) respectively. Then,X is primal
nondegenerate if and only if the matrices

Bk =
p∏

i=1

[
Q1(i)T Ak(i)Q1(i) Q1(i)T Ak(i)Q2(i)
Q2(i)T Ak(i)Q1(i) 0

]
, k = 1,2, . . . ,m

are linearly independent inBq.
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Theorem 4. Let (y, Z) be dual feasible withZ ∈Ms. If (y, Z) is dual nondegenerate,
then the following dimensionality condition necessarily holds:

p∑
i=1

(qi − si )(qi − si + 1)/2≤ m.

Further, let P(i) = [P1(i) P2(i)] be as defined above, withP1(i) and P2(i) corres-
ponding to the zero and the nonzero eigenvalues ofZ respectively. Then,Z is dual
nondegenerate if and only if the matrices

Dk =
p∏

i=1

[
P1(i)T Ak(i)P1(i)

]
, k = 1,2, . . .m

spanBq−s.

For thei th block, if complementarity holds (implying thatX(i) andZ(i) commute),
we can choose (without loss of generality)P(i) = Q(i), and if strict complementarity
holds, we can chooseP1(i) = Q1(i) andP2(i) = Q2(i).

C. Reduction of block diagonal nondegeneracy conditions to the LP case

Consider Definition 3 in the case of LP, whereq= [1, . . . ,1], and for eachi = 1, . . . , p,
one of Q1

0(i) and Q2
0(i) is the scalar 1, and the other is empty. Consequently, for

eachk, Bk is a diagonal matrix consisting of the entries inAk corresponding to nonzero
primal variables. Suppose there arer of these. The primal nondegeneracy condition (see
Definition 3) requires theBk (k = 1, . . . ,m) to be linearly independent, and hence
r ≥ m. Furthermore,Dk = Bk, and the dual nondegeneracy condition requires the
Bk (k = 1, . . . ,m) to span the space of diagonal matrices of dimensionr , and hence
m≥ r . Thusr = m, and the nondegeneracy conditions reduce to the standard condition
in LP, namely nonsingularity of the basis matrix.
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