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Abstract: Large-scale linear time-invariant dynamical systems with inputs and outputs present
major challenges for controller design. Model-order reduction has become popular in recent
years, but controllers designed for reduced-order models may result in unstable closed-loop
plants when applied to the larger-scale system. We investigate the practicality of fixed low-order
controller design applied directly to large-scale continuous-time sparse systems. We assume that
it is practical to compute the eigenvalues with largest real part of such systems using Matlab’s
eigs, which requires only matrix-vector products, but that it is not possible to compute the H∞
norm using Matlab’s getPeakGain or slicot’s slinorm, which use the Boyd-Balakrishnan-
Bruinsma-Steinbuch algorithm, requiring both Hamiltonian eigenvalue decompositions and
singular value decompositions. Instead, we employ a recently developed efficient algorithm called
Hybrid-Expansion-Contraction (HEC), which while not guaranteed to correctly compute the
H∞ norm, finds, under certain assumptions, at least a local maximizer of the associated transfer
function. Our controller design code uses nonsmooth optimization techniques first to attempt to
stabilize the closed-loop system and then to minimize its H∞ norm proxy as computed by HEC.
It is implemented in a new experimental Matlab code hifoos, based on the public-domain
hifoo toolbox first presented in ROCOND 2006, and will be made available for public use after
further investigation and development.
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1. INTRODUCTION

Nine years ago, at the ROCOND 2006 conference, a new
toolbox, hifoo, for H-infinity fixed-order optimization
(Burke et al., 2006), was presented. The goal was to
exploit advances in methods for nonsmooth, nonconvex
optimization and make them available in a convenient
form for engineers to use to design low-order controllers for
linear time-invariant (LTI) dynamical systems with input
and output. Open-loop systems could be specified using
several different input formats, including both Matlab’s
ss structure format and examples from a library of systems
collected in Leibfritz’s COMPleib (Leibfritz, 2004). Hifoo
used two algorithmic phases: a stabilization phase to
design a controller to stabilize the resulting closed-loop
system, and then an optimization phase to minimize, as
far as possible, the H∞ norm of the closed-loop system.
Two optimization techniques were used: the Gradient
Sampling method (Burke et al., 2005) and the BFGS
method, which turns out to be surprisingly effective for
nonsmooth optimization, as later argued by (Lewis and
Overton, 2013). The optimization problems addressed by
hifoo, being nonconvex and nonsmooth, are well known
to be difficult problems to solve, and may be hard in
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a theoretical sense such as discussed by (Blondel and
Tsitsiklis, 1997, 2000). Consequently, hifoo offers no
guarantees; it simply returns the best controller it can find
and it is up to the user to investigate its usefulness.

In later versions developed over the past nine years, hifoo
was extended to have additional functionality of various
sorts, including stabilization of multiple plants and adding
H2 performance options: see the hifoo web page (Hifoo)
for more details. Among other things, hifoo has been
used for the design of an aircraft controller for improved
gust alleviation and passenger comfort (Wildschek et al.,
2009), design of a proton exchange membrane fuel cell
system (Wang and Chen, 2009), design of power systems
controllers (Dotta et al., 2009), design of winding systems
for elastic web materials (Knittel et al., 2007), flight
control via static-output-feedback (Yaesh and Shaked,
2012), robust observer-based fault detection and isolation
(Wahrburg et al., 2012), influence of tire damping on
control of quarter-car suspensions (Akcay and Turkay,
2011), flexible aircraft lateral flight dynamic control (Hanis
and Hromcik, 2011), optimal control of aircraft with a
blended wing body (Hanis et al., 2011), vibration control
of a fluid/plate system (Robu et al., 2010), control design
of a nose landing gear steering system (Pouly et al.,
2010), and bilateral teleoperation for minimally invasive
surgery (Delwiche, 2009). In (Arzelier et al., 2009), the
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authors wrote in their abstract that “the hifoo package
is considered to be the most effective tool for optimal H∞
static-output-feedback control”. A discrete-time version of
hifoo has also been developed (Popov et al., 2010). Hifoo
was and apparently remains the only open-source software
for solving such problems, although a routine hinfstruct,
intended to solve such control design problems and more,
has been part of Matlab’s Control Systems Toolbox since
2010. It is based on work of Apkarian and Noll (2006a,b).

However, none of the hifoo releases up to now have been
able to handle large sparse systems, because the codes
all rely on the Boyd-Balakrishnan-Bruinsma-Steinbuch
(BBBS) algorithm (Boyd and Balakrishnan, 1990; Bru-
insma and Steinbuch, 1990) to compute the H∞ norm,
a computation that is much too expensive when the sys-
tems to which it is applied are large and sparse. Model-
order reduction (Antoulas et al., 2001; Benner et al.,
2006) has become popular in recent years, but controllers
designed for reduced-order models may result in unsta-
ble closed-loop plants when applied to the larger-scale
system. In this paper, we investigate the practicality of
applying fixed low-order controller design directly to large-
scale sparse systems, developing a new experimental code
based on the original hifoo 1.0 toolbox. Instead of the
BBBS algorithm, we use a recently developed efficient
algorithm called Hybrid-Expansion-Contraction (HEC)
(Mitchell and Overton, 2015), which while not guaranteed
to correctly compute the H∞ norm, finds, under certain
assumptions, at least a local maximizer of the associated
transfer function. In this paper we report the results of our
first experiments using hifoos. We plan to make the new
code available for public use after further investigation and
development.

2. PROBLEM STATEMENT

Consider the following open-loop LTI dynamical system
(Zhou et al., 1995) ẋ

z
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A1 B1 B2
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 (1)

where x ∈ Rnx contains the states, u ∈ Rnu is the
physical (control) input, w ∈ Rnw is the performance
input, y ∈ Rny is the physical (measured) output, and
z ∈ Rnz is the performance output. The goal is to design
a controller K defining[

ẋK

u

]
= K

[
xK

y

]
=

[
AK BK

CK DK

] [
xK

y

]
where xK ∈ RnK is the controller state and nK is the
order of the controller, resulting in the closed-loop system: ẋ

ẋK

z

 =

[
A B
C D

] x
xK

w

 (2)

with, assuming D22 = 0 purely for simplicity and concise-
ness of notation:

A =

[
A1 + B2DKC2 B2CK

BKC2 AK

]
B =

[
B1 + B2DKD21

BKD21

]
C = [ C1 + D12DKC2 D12CK ]

D = [ D11 + D12DKD21 ] .

The closed-loop transfer matrix function

T (s) = C(sI −A)−1B + D (3)

maps the performance input w to the performance output
z. Key requirements for the controller K are first and
foremost that the closed-loop system is stable, that is all
the eigenvalues of A are strictly in the left half of the
complex plane, and also, in H∞ control, that the H∞ norm
of T (s) be minimized as much as possible. If nK = nx, the
controller is called a full-order controller and methods to
compute it are well known. However, it is often desirable
to design a low-order controller with nK � nx, and this is
the case hifoo addresses via optimization techniques.

3. HIFOOS FOR LARGE-SCALE SYSTEMS

In order to investigate the viability of using the HEC
H∞ norm approximation algorithm as an efficient means
towards designing fixed, low-order controllers for large-
dimensional LTI systems, without resorting to model-
order reduction techniques, we forked the v1.0 release of
hifoo to create a new large and sparse-enabled version,
which we call hifoos for hifoo–sparse. Several important
modifications were made.

First, hifoo’s stabilization phase requires repeatedly com-
puting the spectral abscissa (the maximum of the real
parts of the eigenvalues) of the matrix A as the controller
K is updated in order to stabilize the closed-loop system
defined in (2). For efficient handling of large-scale systems,
this necessitates that the dense eigensolver eig be replaced
with a sparse solver capable of finding a rightmost eigen-
value of a matrix. For this, we used Matlab’s eigs, called
both on the matrix and its transpose, in order to produce
the computed rightmost eigenvalue’s corresponding right
and left eigenvectors necessary for calculating the gradient
of the spectral abscissa of A with respect to the controller
variables (Burke et al., 2002).

Second, assuming the stabilization phase is successful, the
H∞ optimization phase begins: the H∞ norm of (3) is
repeatedly calculated as the controller is changed in order
to optimize it. In lieu of using Matlab’s getPeakGain or
slicot’s slinorm (updated versions of the original codes
ss/norm and linorm used by hifoo 1.0), both of which are
implementations of the globally convergent but expensive
BBBS algorithm, we instead employed getStabRadBound,
a Matlab implementation of the recently developed HEC
algorithm (Mitchell and Overton, 2015), for approximating
the H∞ norm. As getStabRadBound’s computation can
be optionally warm-started, an option was added to allow
hifoos to always warm-start getStabRadBound using the
H∞ norm approximation, and its related singular vec-
tors, found for the previous controller encountered during
the BFGS optimization. When warm-starting is disabled,
HEC always calculates an initial guess by computing a
selected rightmost eigenvalue of A; for more details see
(Guglielmi et al., 2013, pages 728-9).
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Finally, the method used to compute the gradients of
both the spectral abscissa and the H∞ norm in all hifoo
releases is not efficiently scalable to large-dimensional sys-
tems. However, modifying the calculation of the gradient
of the spectral abscissa so that it is amenable to large and
sparse systems is straightforward. An alternate method
for efficiently computing the gradient of the H∞ norm
is also made possible by the result of (Guglielmi et al.,
2013, Theorem 2.9), which relates the singular vectors
associated with the norm of (3) to the eigenvectors of the
perturbed system matrix, all of which can be optionally
returned by getStabRadBound for no additional cost once
it has converged to an approximation. Thus, once eigs or
getStabRadBound has returned a result for the spectral
abscissa or H∞ norm respectively, the remaining compu-
tational cost for preparing the gradients has a FLOP count
of only

O
(
n2
K + (nx + nK)(nu + ny) + nuny + nunz + nwny

)
.

By comparison, the standard hifoo method for com-
puting the gradients has a lower bound FLOP count of
Ω
(
(nx + nK)2

)
, which is a cost incurred on top of the

O((nx + nK)3) FLOPs required to either compute the
spectral abscissa or form the transfer function matrix (a
necessary step in hifoo’s H∞ norm gradient computa-
tion), assuming dense matrix methods are used.

There are some potential issues, however, that may ad-
versely affect the practical utility of the current version
of hifoos and these warrant discussion. As the HEC algo-
rithm is not guaranteed to converge to the true value of the
H∞ norm, there is a danger that the HEC approximations,
and the gradients derived from them, may cause the H∞
optimization phase to fail. On one hand, the approxima-
tions returned by getStabRadBound may not even corre-
spond to a continuous function, which could lead to BFGS
incurring breakdown before reaching a local minimum, as
the line search is sensitive to this failure mode. On the
other hand, another possibility is that getStabRadBound
may only return locally maximal values of the norm of
the transfer function evaluated along the imaginary axis
as its computed approximations to the H∞ norm. In this
scenario, BFGS may be reducing a locally maximal peak
of the transfer function as it changes in response to the
controller variables being “optimized”, but the updated
controllers may not actually provide any reduction in the
true value of the H∞ norm of the closed-loop systems. In
this case, a plausible outcome is that the true value of the
H∞ norm could in fact be increasing while misleadingly,
the reported values computed by getStabRadBound as the
H∞ optimization progresses are decreasing.

Moreover, to produce approximations to the H∞ norm,
the HEC algorithm is entirely dependent upon the quality
of the sparse eigensolver employed to find rightmost eigen-
values of matrices, which is inherently difficult. Similarly,
the initial stabilization phase is also entirely reliant upon
the sparse eigensolver returning a rightmost eigenvalue.
A bonus for discrete-time systems (not discussed further
here) is that it is only necessary to find eigenvalues of
largest modulus, which is generally readily done with ex-
isting eigensolvers.

While there are potentially effective approaches to increas-
ing the quality of the approximations returned from HEC

Table 1. Large-scale full-order model (FOM)
2D heat flow problems for which COMPleib

also includes reduced-order models (ROM).

Problem nx (FOM) nx (ROM) nw nu nz ny

HF2D1 3796 316 3798 2 3796 3
HF2D2 3796 316 3798 2 3796 3
HF2D5 4489 289 4491 2 4489 4
HF2D6 2025 289 2027 2 2025 4
HF2D9 3481 484 3483 2 3481 2
HF2D CD1 3600 256 3602 2 3600 2
HF2D CD2 3600 256 3602 2 3600 2
HF2D CD3 4096 324 4098 2 4096 2
HF2D IS1 4489 361 4491 2 4489 4
HF2D IS2 4489 361 4491 2 4489 4
HF2D IS3 3600 256 3602 2 3600 2
HF2D IS4 3600 256 3602 2 3600 2

(e.g. see (Mitchell, 2014, Section 4.4)), in this paper, we
first seek to understand how prevalent these issues are in
practice and to observe the consequences. It is also worth
noting that the common practice of using a reduced-order
model as a surrogate while designing and optimizing a
controller intended to be used in the large-scale closed-
loop system is not without its pitfalls either, as there is no
guarantee that the resulting system will even be stable, let
alone optimized with respect to the H∞ norm.

4. EXPERIMENTAL SETUP

To evaluate hifoos, we used the set of large-scale 2D heat
flow problems from the 2006 v1.1 release of COMPleib
(Leibfritz, 2004). Of these, we chose the twelve HF2Dx
full-order model (FOM) problems for which correspond-
ing medium-scale reduced-order models (ROM) are also
available in the library (see Table 1) so that we could
compare the quality of the controllers produced using
hifoos on the large-scale problems with controllers of
the same order produced using a slightly modified hifoo
1.0 on the reduced-order equivalents. The ROM problems
have names of the form NAME Mxxx where NAME is the
name of the associated FOM problem and xxx indicates
the reduced dimension for A1, shown in the third column
of Table 1. As computing the H∞ norm exactly is already
expensive for these medium-scale problems, particularly
given how many times it will be evaluated in the course of
optimizing a controller, we chose to use only the smaller
of the two reduced-order models for each problem. We
elected to design order 10 controllers for the entire test set
and thus the number of controller variables in K varied
from 144 to 168 depending on the problem; the number of
controller variables is (nK + nu)(nK + ny).

Given the large computational costs for running these
experiments, for both hifoo on the reduced-order models
and hifoos on the original large-dimensional problems,
we made the following parameter selections and modifi-
cations. We disabled hifoo’s expensive gradient sampling
process that is usually done after both the initial BFGS
stabilization phase and the BFGS H∞ optimization phase;
we made this modification for both hifoo and hifoos. In
a similar vein, we reduced the max BFGS iteration count
to 100 for both codes, meaning that their stabilization and
H∞ optimization phases were each allowed up to 100 itera-
tions. Though it is not provided as a user option in hifoo,
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we also enabled setting the nvec BFGS option explicitly
to 0 (indicating full BFGS) since otherwise the routine
defaults to a less effective 10 gradient history limited-
memory BFGS scheme when the number of controller
variables is greater than 100. A unique seed was randomly
generated and stored per problem so that each method,
hifoo, hifoos-W (warm-started HEC), and hifoos-C
(cold-started HEC), could be ensured to start stabilization
from the same randomly generated initial controller.

For the two hifoos variants, we ran getStabRadBound
with the default termination conditions but additionally
enabled the following options: a 0.01 relative termination
tolerance for the expansion phase, vector extrapolation
using the five past iterates, and eigenvector recycling
enabled, which, in combination, were shown to greatly
accelerate the method over the default HEC algorithm in
extensive tests (Mitchell and Overton, 2015). In hifoos-
W, every call to getStabRadBound was warm-started
via the result computed by the immediately preceding
getStabRadBound call, except the first which was cold-
started. In order to increase the likelihood that eigs
would return rightmost eigenvalues of matrices, the default
options were changed so that 8 eigenvalues were requested
and the Krylov subspace dimension was increased to
60 while a maximum iteration limit was set at 200;
these settings were applied both to eigs calls used by
getStabRadBound during the H∞ optimization phase and
to those made for spectral abscissa computations during
the preceding stabilization phase.

We ran both hifoos methods on the twelve large-scale
problems and hifoo on the associated reduced-order
models. For each problem, all methods were run three
times, using the same three randomly generated initial
controllers for that problem. For hifoo on the reduced-
order models, we identified the best of the three con-
trollers per problem by choosing the one with the lowest
value of the H∞ norm computed by getPeakGain for
the corresponding small-scale closed-loop systems. For the
full-order large-scale problems, where it isn’t feasible to
use getPeakGain, we instead calculated an approxima-
tion using getStabRadBound, without a warm start, for
hifoo’s best controllers designed for the reduced-order
models. Similarly, for both hifoos variants, we again
used getStabRadBound without a warm start to com-
pute approximations for each method’s three controllers
and of these, used the lowest approximation reported to
select the corresponding best controller. However, as a
result, this meant we had two H∞ norm approximations
per initial controller for hifoos-W, since enabling warm-
starting may cause getStabRadBound to converge to a
different approximation. Thus, for each of these pairs of
approximations, we chose the higher of the two values since
it must be a better approximation, and then used these
sets of better approximations to choose the best controller
of the three.

For all methods, we recorded the total CPU-time incurred
for running hifoo or hifoos on three different starting
points but did not time the additional cost to compute
or approximate the H∞ norm after the controllers had
been returned for the purposes of this evaluation. For
comparison purposes, we attempted to run hinfstruct
on the large-scale FOM problems but the routine threw

an “out of memory” exception for even the smallest of
these problems (HF2D6). All experiments were done using
Matlab R2014a running on a single-user desktop with
Ubuntu 14.04 (64-bit) and an Intel i7-3770K CPU with 8
GB of RAM.

Before discussing the results, it is important to keep the
following caveats in mind. First, the HEC algorithm is
guaranteed only to find a lower bound for the H∞ norm.
On a test set of challenging small problems where the
results could be verified, getStabRadBound was shown to
find the H∞ norm to four digits of accuracy on 28 out
of 33 problems and to eight digits of accuracy on 21 of
these same 33 problems (Mitchell and Overton, 2015).
However, as the HEC method is new, there is as yet no
other data indicating whether this level of performance is
usually to be expected. Furthermore, without spending an
inordinate amount of computational resources, it is very
difficult to empirically assess the performance of HEC on
large-dimensional problems. It is thus imperative to be
aware that the reported values for H∞ norm for the large-
scale problems evaluated may only be lower bounds.

While we have tried to control the experiments by ini-
tializing each method with same problem-specific starting
controller, minor differences in rounding errors determined
by how exactly the spectral abscissa, the H∞ norm and
their gradients are computed can significantly alter the
trajectory of the optimization routines, even if the dif-
ferent methods are essentially returning the same values.
To confirm and illustrate this point, we created a dense
version of hifoos, that is, a version that still uses all
the regular dense procedures of hifoo that are guaran-
teed to compute the true values of the spectral abscissa
and H∞ norm. However, we retained the new large and
sparse-efficient formulation for calculating the gradients
that hifoos uses, as discussed in §3. The results differed
significantly although in the absence of rounding errors
they should theoretically be identical.

Finally, it is worth making explicit mention that in our
timing report, we do not account for the cost of obtaining
reduced-order models for use with hifoo 1.0, since they
were provided by COMPleib. In practice, however, this cost
may be significant and should not be ignored in considering
the expense of the standard practice of designing con-
trollers using reduced-order models. Our method that we
propose and investigate here has the distinct benefit that
it can efficiently begin stabilizing and optimizing large-
scale systems without ever having to apply model-order
reduction techniques.

5. RESULTS

Table 2 shows our main results. Column 1 gives the FOM
problem name. Column 2 reports the H∞ norm for the
closed-loop system using the controller designed by hifoo
for the associated ROM problem, for which the norm
was computed exactly. Column 3 shows a lower bound
for the H∞ norm for the closed loop system for the
associated FOM, using the same controller as in Column 2.
Columns 4 and 5 show lower bounds for the H∞ norm for
the closed-loop system for the FOM, using the controller
designed by the hifoos codes applied directly to the
FOM. For Columns 3-5 the lower bound is calculated by

28



Table 2. Column 2 gives the H∞ performance
for the closed loop systems using the con-
trollers designed by hifoo for the ROMs;
Columns 4 and 5 give lower bounds on the
H∞ performance for the closed-loop systems
designed by the two variants of hifoos for
the associated FOMs. Column 3 gives lower
bounds on the H∞ performance of the closed-
loop system for each FOM using the controller

designed for the corresponding ROM.

H∞ (ROM) Hlb
∞ (FOM)

Problem hifoo hifoo hifoos-W hifoos-C

HF2D1 6.73× 103 3.43× 103 5.52× 103 5.08× 103

HF2D2 5.64× 103 2.68× 103 3.10× 103 2.89× 103

HF2D5 1.94× 104 2.83× 104 2.38× 106 6.15× 105

HF2D6 7.86× 103 1.08× 104 2.63× 105 2.37× 105

HF2D9 7.42× 101 2.95× 101 2.95× 101 2.95× 101

HF2D CD1 4.62× 100 ∞ 6.23× 102 2.55× 102

HF2D CD2 7.01× 100 ∞ 6.18× 101 1.64× 101

HF2D CD3 4.30× 100 ∞ 9.84× 102 3.54× 102

HF2D IS1 7.57× 104 3.32× 105 4.21× 106 3.54× 106

HF2D IS2 1.17× 104 4.68× 103 6.05× 105 5.97× 105

HF2D IS3 8.49× 100 ∞ 1.31× 103 4.12× 102

HF2D IS4 6.92× 100 ∞ 3.88× 103 8.36× 103

getStabRadBound. The value∞ denotes that stabilization
was not achieved, measured using eigs. Each result shown
is the best result obtained over the same three randomly
generated starting points used by all of hifoo, hifoos-W
and hifoos-C.

Assuming that getStabRadBound is providing good ap-
proximations, we see that for HF2D9 the hifoos variants
have produced controllers matching the performance of
the controller produced by hifoo using the reduced-order
model when plugged into the large-scale system. On HF2D2,
hifoos-C’s controller has nearly matched the performance
of hifoo’s reduced-order model derived controller while on
HF2D1, the full-order model derived controllers produced
by the two hifoos methods are also close in performance
to the hifoo controller. On the other hand, on HF2D5,
HF2D6, HF2D IS1, and HF2D IS2, the controllers returned
by hifoo all provide results that are at least one to two or-
ders of magnitude better than those for the best controllers
found by hifoos. Perhaps most significantly, for problems
HF2D CD1, HF2D CD2, HF2D CD3, HF2D IS3, and HF2D IS4,
we see that the best controllers optimized using hifoo
on the reduced-order models fail to stabilize any of these
five full-order problems. Furthermore, as eigs is generally
a very good quality sparse eigensolver, it is reasonable to
assume that the corresponding hifoos controllers for these
problems actually do stabilize the large-scale systems, even
if their H∞ norm values computed by getStabRadBound
may be underreporting the true values.

In Table 3, we report the running times of each method
for each problem, summing up the time for all three
starting points. Interestingly, we see that any potential
benefit of warm-starting HEC in hifoos-W seems to
be problem-specific and that it actually increases the
running times on eight of the twelve problems, making
it, surprisingly, slightly slower overall across the entire
data set compared to hifoos-C. Note that the total
running time required for the hifoos codes to design

Table 3. Total elapsed CPU time in minutes for
each method to design a controller using three
starting points. hifoo designed controllers us-
ing the reduced-order models (ROM) while the
two hifoos variants worked directly on the

full-order models (FOM).

Time (ROM) Time (FOM)

Problem hifoo hifoos-W hifoos-C

HF2D1 419.37 631.70 875.76
HF2D2 714.72 967.42 994.80
HF2D5 314.47 141.75 134.42
HF2D6 316.17 41.23 12.98
HF2D9 68.75 21.23 37.52
HF2D CD1 170.90 151.47 88.75
HF2D CD2 175.78 95.80 46.19
HF2D CD3 418.28 255.25 124.47
HF2D IS1 625.17 170.09 66.62
HF2D IS2 597.66 856.67 617.38
HF2D IS3 164.00 249.72 275.65
HF2D IS4 193.03 153.63 96.11

TOTAL 4178.30 3735.96 3370.65

controllers for the entire full-order model dataset is just 80
to 90% of the running time needed by hifoo to compute
the controllers for the reduced-order models, despite the
fact that hifoos is working with problems where the
dimensions of the A1 matrices range from about 7 to
15.5 times larger. However, this is partly explained by
our observation that the BFGS routine performing H∞
optimization in hifoos frequently terminated quite early,
particularly compared to the behavior displayed by hifoo.
In all cases, this early termination was due to the BFGS
line search failing and often occurred after only taking
a handful of BFGS iterations. In contrast, hifoo hit its
100 max iteration count on ten of the twelve problems
while it reached normal termination on one example and
incurred a line search failure on only one problem. This
marked difference in behavior seems to occur because
the approximate and sometimes inconsistent values that
may be returned by HEC often prevents the line search
from succeeding. Consequently, a more stochastic-friendly
optimization method might be more effective at handling
the approximate nature of getStabRadBound’s results.

6. CONCLUSIONS

We have presented a new approach to designing fixed
low-order controllers for stabilizing and optimizing the
H∞ norm of large-scale LTI systems. To our knowledge,
this is the first attempt to directly and efficiently de-
sign such controllers without resorting to model-order
reductions techniques, which was made possible by the
newly developed efficiently scalable HEC algorithm for
approximating the H∞ norm. We have demonstrated that
hifoos can be a viable approach, sometimes producing
better controllers than are obtained from reducing the
dimensionality of the systems and designing controllers for
the smaller-scale systems.
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