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APPROXIMATING THE REAL STRUCTURED STABILITY RADIUS
WITH FROBENIUS-NORM BOUNDED PERTURBATIONS∗

N. GUGLIELMI† , M. GÜRBÜZBALABAN‡ , T. MITCHELL§ , AND M. L. OVERTON¶

Abstract. We propose a fast method to approximate the real stability radius of a linear dy-
namical system with output feedback, where the perturbations are restricted to be real valued and
bounded with respect to the Frobenius norm. Our work builds on a number of scalable algorithms
that have been proposed in recent years, ranging from methods that approximate the complex or
real pseudospectral abscissa and radius of large sparse matrices (and generalizations of these meth-
ods for pseudospectra to spectral value sets) to algorithms for approximating the complex stability
radius (the reciprocal of the H∞ norm). Although our algorithm is guaranteed to find only upper
bounds to the real stability radius, it seems quite effective in practice. As far as we know, this is
the first algorithm that addresses the Frobenius-norm version of this problem. Because the cost is
dominated by the computation of the eigenvalue with maximal real part for continuous-time systems
(or modulus for discrete-time systems) of a sequence of matrices, our algorithm remains very efficient
for large-scale systems provided that the system matrices are sparse.
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1. Introduction. Consider a linear time-invariant dynamical system with out-
put feedback defined, for continuous-time systems, by matrices A ∈ Rn×n, B ∈ Rn×p,
C ∈ Rm×n, and D ∈ Rm×p as

ẋ = Ax+Bw,(1)
z = Cx+Dw,(2)

where w is a disturbance feedback depending linearly on the output z [HP05, p. 538].
For simplicity, we restrict our attention to continuous-time systems for most of the
paper, but we briefly explain how to extend our results and methods to discrete-time
systems in section 6.

The real stability radius, sometimes called the real structured stability radius,
is a well-known quantity for measuring robust stability of linear dynamical systems
with output feedback [HP90a, HP90b, HK94, HP05, ZGD95, Kar03]. It measures
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stability under a certain class of real perturbations where the size of the perturbations
is measured by a given norm ‖·‖. Most of the literature has focused on spectral
norm bounded perturbations in which case there exists a characterization in terms of
an explicit formula [QBR+95] and a level-set algorithm [SVDT96]. This algorithm
has been proven to be convergent; however, it is not practical for systems where
large and sparse matrices arise as it requires a sequence of Hamiltonian eigenvalue
decompositions, each with a complexity of O(n3). For larger-scale problems, see
[FS14], which treats the special case where B = C = I and D = 0.

As an alternative to the spectral norm, Frobenius-norm bounded perturbations
have also been of interest to the control community [LKL96, BS99, BS98, BB01,
Bob99, BBD01]. It has been argued that the Frobenius norm is easier to compute
and is more advantageous to consider in certain types of control systems [Bob99,
BBD01], admitting natural extensions to infinite-dimensional systems [BB01]. In the
special case B = C = I,D = 0, there exists an algorithm [Bob99, BBD01] that
gives upper and lower bounds for the Frobenius-norm bounded real stability radius;
however, there seems to be no algorithm that is applicable in the general case. Indeed,
[BV14] describes this as an unsolved research problem. In this paper, we present the
first method to the best of our knowledge that provides good approximations to the
Frobenius-norm bounded real stability radius.

Our method relies on two foundations. The first is the theory of spectral value sets
associated with the dynamical system (1)–(2) as presented in [HP05, Chapter 5]. The
second is the appearance of a number of recent iterative algorithms that find rightmost
points of spectral value sets of various sorts, beginning with the special case of matrix
pseudospectra (the case B = C = I,D = 0) [GO11], followed by a related method for
pseudospectra [KV14] and extensions to real-structured pseudospectra [GL13, GM15,
Ros15, Gug16], and to spectral value sets associated with (1)–(2) [GGO13, MO16]
and related descriptor systems [BV14].

The paper is organized as follows. In section 2 we introduce spectral value sets,
establishing a fundamental relationship between the spectral value set abscissa and
the stability radius which was not previously known for Frobenius-norm bounded real
spectral value sets. In section 3 we introduce an ordinary differential equation (ODE)
that generates a sequence of points in the spectral value set moving monotonically to
the right as far as possible. In section 4 we present a practical iterative method to
approximate rightmost points efficiently. This leads to our method for approximating
the Frobenius-norm bounded real stability radius, presented in section 5. We outline
extensions to discrete-time systems in section 6, present numerical results in section 7,
and make concluding remarks in section 8.

2. Fundamental concepts. Throughout the paper, ‖·‖2 denotes the matrix 2-
norm (maximum singular value), whereas ‖·‖F denotes the Frobenius norm (associated
with the trace inner product). The usage ‖·‖ means that the norm may be either ‖·‖2
or ‖·‖F, or both when they coincide, namely for vectors or rank-one matrices. We use
the notation C− to denote the open left half-plane {λ : Re (λ) < 0} and H to denote
the closed upper half-plane {λ : Im(λ) ≥ 0}.

2.1. Spectral value sets and µ-values. Given real matrices A, B, C, and
D defining the linear dynamical system (1)–(2), linear feedback w = ∆ z leads to a
perturbed system matrix with the linear fractional form

(3) M(∆) = A+B∆(I −D∆)−1C for ∆ ∈ Kp×m,
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where the field K is either R or C. Note that since

(4) ‖D∆‖2 ≤ ‖D‖2‖∆‖2 ≤ ‖D‖2‖∆‖F,

we can ensure that M(∆) is well defined by assuming ‖∆‖ ≤ ε and ε‖D‖2 < 1,
regardless of whether ‖∆‖ is ‖∆‖2 or ‖∆‖F.

Definition 2.1. Let ε ∈ R, with ε‖D‖2 < 1. Define the spectral value set with
respect to the norm ‖·‖ and the field K as

σK,‖·‖
ε (A,B,C,D) =

⋃{
σ(M(∆)) : ∆ ∈ Kp×m, ‖∆‖ ≤ ε

}
.

Here σ denotes spectrum. Note that

σK,‖·‖2
ε (A,B,C,D) ⊇ σK,‖·‖F

ε (A,B,C,D) ⊇ σK,‖·‖
0 (A,B,C,D) = σ(A).

It is well known that when K = C, the spectral value set can equivalently be
defined as the set of points s ∈ C for which the spectral norm, i.e., the largest singular
value, of the transfer matrix

G(s) = C(sI −A)−1B +D

takes values at least 1/ε [HP05, Chap. 5]. Furthermore, it is well known that

(5) σC,‖·‖
ε (A,B,C,D) =

⋃{
σ(M(∆)) : ∆ ∈ Cp×m, ‖∆‖ ≤ ε and rank(∆) ≤ 1

}
.

As a consequence of this rank-one property, it is clear that

σC,‖·‖2
ε (A,B,C,D) = σC,‖·‖F

ε (A,B,C,D).

In contrast, when perturbations are restricted to be real, the inclusion

σR,‖·‖2
ε (A,B,C,D) ⊇ σR,‖·‖F

ε (A,B,C,D)

is generically strict. Instead of ordinary singular values, we must consider real struc-
tured singular values or real µ-values, that is, with perturbations restricted to real
matrices. This topic is discussed at length in [HP05, sec. 4.4], allowing additional
structure to be imposed on ∆ beyond simply ∆ ∈ Kp×m, and treating a general
class of operator norms, including the spectral norm, but not, however, the Frobenius
norm. See also [Kar03, Chapter 6].

Definition 2.2. The µ-value of a matrix H ∈ Cm×p with respect to the field K
and the norm ‖·‖ is defined by

(6) µ
‖·‖
K (H) =

[
inf
{
‖∆‖ : ∆ ∈ Kp×m, det(I −H∆) = 0

}]−1
.

We use the convention that taking the infimum over the empty set always yields
∞ and that ∞−1 = 0, so that µ‖·‖K (0) = 0. Definition 2.2 defines the real µ-value
when K = R for complex matrices H as well as real matrices. In particular, when
mp = 1 with H ∈ C\R, the equation det(I −H∆) = 0 is not solvable for real ∆, and
so µ‖·‖R (H) is zero. On the other hand, when mp > 1, the equation det(I −H∆) = 0
is generically solvable for real ∆, even if H is complex, and hence µ‖·‖R (H) is nonzero.

The following lemma is well known in the case of the spectral norm, where it is
usually known as the Eckart–Young theorem. See [QBR+95, Lemma 1] and [HP05,
Prop. 4.4.11] for extensions to other structures and other operator norms. A key point
to note here is that while this result holds both for K = C and K = R, it does not
hold for the real µ-value when H is complex.
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Lemma 2.3. Let H ∈ Km×p, and let ‖·‖ be either ‖·‖2 or ‖·‖F. Then, µ‖·‖K (H) =
‖H‖2.

Proof. If H = 0, the result is clear. Assume H 6= 0. If ‖∆‖ < ‖H‖−1
2 , then we

have from (4) that det(I − H∆) 6= 0. This shows that µ‖·‖K (H) ≤ ‖H‖2. For the
reverse inequality, let H have the singular value decomposition UΣV T, where U and
V are unitary and

Σ = diag{σ1(H), σ2(H), . . . , σmin{p,m}(H)}

is a diagonal matrix with singular values on the diagonal in descending order by
magnitude. Define

∆ = V diag{σ1(H)−1, 0, . . . , 0}UT.

Then ‖∆‖F = ‖∆‖2 = ‖H‖−1
2 and det(I − H∆) = 0. Furthermore, if K = R, then

since H is real, ∆ is also real. This shows that µ‖·‖K (H) ≥ ‖H‖2.

Combining [HP05, Lemma 5.2.7] with Lemma 2.3 results in the following corollary.
This may be compared with [HP05, Corollary 5.2.8], which treats a more general class
of structured perturbations but is restricted to operator norms.

Corollary 2.4. Let ‖·‖ be either ‖·‖2 or ‖·‖F. Let s ∈ C\σ(A) and ‖D‖ <
µ
‖·‖
K (G(s)), and define

ε(s) = min
{
‖∆‖ : ∆ ∈ Kp×m, s ∈ σ(M(∆))

}
.

Then,

ε(s) =
(
µ
‖·‖
K (G(s))

)−1
.

This leads to the following theorem, which may be compared to [HP05, Theorem
5.2.9], which again does not treat the Frobenius norm.

Theorem 2.5. Let ‖·‖ be either ‖·‖2 or ‖·‖F. Suppose ε > 0 and ε ‖D‖2 < 1.
Then

σK,‖·‖
ε (A,B,C,D) = σ(A)

⋃ {
s ∈ C\σ(A) : µ

‖·‖
K (G(s)) ≥ ε−1

}
.

Proof. Suppose s ∈ σ(M(∆))\σ(A), ∆ ∈ Kp×m, and ‖∆‖ ≤ ε. By [HP05,
Lemma 5.2.7], we have (µ‖·‖K (G(s)))−1 ≤ ‖∆‖ ≤ ε. Conversely, if s ∈ C\σ(A) and
(µ‖·‖K (G(s))) ≥ ε−1, then we have µ‖·‖K (G(s)) > ‖D‖2, and by Corollary 2.4, there
exists ∆ with ‖∆‖ = (µ‖·‖K (G(s)))−1 = ε such that s ∈ σ(M(∆)).

Note that even when A,B,C,D are real, the transfer function G(s) is normally
complex for s 6∈ R, so it is not generally the case that µ‖·‖R (G(s)) = ‖G(s)‖2. For
real spectral value sets defined by the spectral norm, the optimal perturbation that
appears in Definition 2.2 of the µ-value can in fact always be chosen to have rank at
most two [QBR+95, sec. 2], leading to the formula

σR,‖·‖2
ε (A,B,C,D) =

⋃{
σ(M(∆)) : ∆ ∈ Rp×m, ‖∆‖2 ≤ ε, and rank(∆) ≤ 2

}
.

We make the assumption in this paper that the same property holds for the Frobenius
norm. This assumption seems reasonable, because the real part of a complex rank-
one perturbation has rank at most two, and as we shall see in sections 3 and 4, such
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rank-two real perturbations arise in a natural way. The assumption is also supported
by numerical experiments.

We also make a second assumption that mp > 1 because when m = p = 1, the
spectral value set σR,‖·‖

ε (A,B,C,D) has an atypical structure with no interior points,
being parametrized by a single real scalar ∆ ∈ [−ε, ε].

2.2. The stability radius. Because we are focusing on the continuous-time
dynamical system (1)–(2), the stability region of interest is the open left half-plane
C−. We say that A is stable if σ(A) ∈ C−, in which case, for sufficiently small ε, the
spectral value set σK,‖·‖

ε (A,B,C,D) is also in C−. The stability radius r‖·‖K measures
the size of the minimal perturbation that destabilizes the matrix or results in M(∆)
being undefined [HP05, Def. 5.3.1].

Definition 2.6. The stability radius r‖·‖K is defined with respect to the field K
and the norm ‖·‖ as

r
‖·‖
K (A,B,C,D) = inf{‖∆‖ : ∆ ∈ Kp×m,det(I −D∆) = 0 or σ(M(∆)) 6⊂ C−}.

The characterization

(7) r
‖·‖
K (A,B,C,D) = min

([
µ
‖·‖
K (D)

]−1
, inf
ω∈R

[
µ
‖·‖
K (G(iω))

]−1
)

is well known for operator norms [HP05, Theorem 5.3.3]. Corollary 2.4 and Lemma 2.3
extend [HP05, Theorem 5.3.3] beyond operator norms to the Frobenius norm leading
to the formula

(8) r
‖·‖
K (A,B,C,D) = min

(
‖D‖−1

2 , inf
ω∈R

[
µ
‖·‖
K (G(iω))

]−1
)
,

where ‖·‖ is either the spectral or the Frobenius norm.

Remark 2.7. As the µ
‖·‖
R function is upper semicontinuous both for operator

norms and the Frobenius norm (see [Kar03, Lemma 1.7.1]), we have lim|ω|→∞G(iw)
= D but

(9) lim inf
|ω|→∞

[
µ
‖·‖
K (G(iω))

]−1
≥
[
µ
‖·‖
K (D)

]−1
= ‖D‖−1

2

with a possible strict inequality (see [HP05, Remark 5.3.17(i)] and [HP05, Example
5.3.18] for an example with p = 1). Therefore, when D 6= 0, we cannot eliminate the
first term in (8). Either r‖·‖K (A,B,C,D) = ‖D‖−1

2 or the infimum in (8) is strictly
less than ‖D‖−1

2 , in which case it has to be attained at a finite ω; otherwise, we would
obtain a contradiction as |ω| → ∞ by the inequality (9). However, in the special case
when D = 0, we can interpret [µ‖·‖K (D)]−1 = ‖D‖−1

2 = ∞ (see the paragraph after
Definition 2.2) and eliminate the first term in (8).

In the complex case K = C, the spectral norm and Frobenius norms define the
same stability radius r‖·‖C . In this case also we can eliminate the first term in (8), since
(9) holds with equality, and the second term is simply the reciprocal of the H∞ norm of
the transfer matrix G on the boundary of the stability region. The standard method to
compute it is the Boyd–Balakrishnan–Bruinsma–Steinbuch (BBBS) algorithm [BB90,
BS90]. This algorithm is globally and quadratically convergent but is not practical
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when n is large due to its computational complexity: it requires repeated computation
of all eigenvalues of 2n× 2n Hamiltonian matrices. The first constructive formula to
compute µ‖·‖2R and hence r‖·‖2R , the real µ-value and the real stability radius for the
spectral norm, was given in [QBR+95]; this led to a practical level-set algorithm
[SVDT96]. However, this is significantly more involved than the BBBS algorithm
and hence is also impractical in the large-scale case. As noted in the introduction,
much less attention has been given to the Frobenius-norm case, though it is clearly of
interest in applications. As far as we know, no constructive method has been given
to approximate µ‖·‖FR or r‖·‖FR , even if n is small.

2.3. The spectral value set abscissa. The spectral value set abscissa mea-
sures how far the spectral value set extends rightward into the complex plane for a
prescribed value of ε.

Definition 2.8. For ε ≥ 0, ε‖D‖2 < 1, the spectral value set abscissa (with
respect to the norm ‖ · ‖ and the field K) is

(10) αK,‖·‖
ε (A,B,C,D) = max{Reλ : λ ∈ σK,‖·‖

ε (A,B,C,D)}

with αK,‖·‖
0 (A,B,C,D) = α(A), the spectral abscissa of A.

In the case K = R, αR,‖·‖
ε (A,B,C,D) is called the real spectral value set abscissa.

Definition 2.9. A rightmost point of a set S ⊂ C is a point where the maximal
value of the real part of the points in S is attained. A locally rightmost point of a
set S ⊂ C is a point λ which is a rightmost point of S ∩ N for some neighborhood
Nδ = {s : |s− λ| < δ} of λ with δ > 0.

Remark 2.10. Since A,B,C,D are real, σK,‖·‖
ε (A,B,C,D) is symmetric with re-

spect to the real axis, so without loss of generality, when we refer to a rightmost λ
in σ

K,‖·‖
ε , we imply that λ ∈ H, the closed upper half-plane, and when we say that

the rightmost point λ is unique, we mean considering only points in H. The same
convention applies to the spectrum, so that a rightmost eigenvalue is understood to
be in H.

There is a key relationship between the spectral value set abscissa and the stability
radius that is a consequence of Theorem 2.5.

Corollary 2.11.

r
‖·‖
K (A,B,C,D) = inf

{
ε : ε‖D‖2 < 1 or αK,‖·‖

ε (A,B,C,D) ≥ 0
}

(11)

= min
(
‖D‖−1

2 , inf
{
ε : αK,‖·‖

ε (A,B,C,D) ≥ 0
})

.(12)

Proof. That the right-hand sides of (11) and (12) are the same is immediate.
Hence, it suffices to show that both of the infimum terms in (8) and (12) are attained
and are equal when the upper bound ‖D‖−1

2 is not active. The infimum in (12) is
attained because αK,‖·‖

ε (A,B,C,D) is a monotonically increasing continuous function
of ε (see [Kar03, Chapter 2] for continuity properties of real spectral value sets), and
the infimum in (8) is attained at a finite point by Remark 2.7. Finally, the infimal
values are equal by Theorem 2.5.

The algorithm developed in this paper for approximating the real stability ra-
dius r‖·‖FR when n is large depends on the fundamental characterization (12). This
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was also true of the recent algorithms developed in [GGO13, BV14, MO16] for the
complex stability radius r‖·‖C when n is large, for which the equivalence (12) is more
straightforward and well known.1

3. Rightward trajectories of spectral value set eigenvalues. In this sec-
tion, let ε > 0 be fixed with ε ‖D‖2 < 1. We consider the variational behavior of
eigenvalues of the perturbed system matrix M(∆) defined in (3). It is convenient to
consider a smooth parametrization t 7→ ∆(t) mapping R to Rp×m. We will use ∆̇ to
denote the derivative (d/dt)∆(t).

3.1. An ordinary differential equation approach. We extend the method
of Guglielmi and Lubich [GL13, sec. 2.1] for approximating the real pseudospectral
abscissa (the real spectral value set abscissa in the case B = C = I, D = 0) to the
spectral value set abscissa αR,‖·‖F

ε for general A,B,C,D, using the Frobenius norm.
As we shall see, the extension is not straightforward as additional subtleties arise in
the general case that are not present in the pseudospectral case.

We need the following lemma.

Lemma 3.1. Given a smooth parametrization ∆(t) with ‖∆(t)‖F‖D‖2 < 1, we
have

(13)
d

dt

(
∆(t) (I −D∆(t))−1

)
= (I −∆(t)D)−1 ∆̇(t) (I −D∆(t))−1

.

Proof. For conciseness, we omit the dependence on t, differentiate, and regroup
terms as

d

dt

(
∆ (I −D∆)−1

)
= ∆̇ (I −D∆)−1 + ∆

d

dt
(I −D∆)−1

= ∆̇ (I −D∆)−1 + ∆ (I −D∆)−1
D∆̇ (I −D∆)−1

=
(
I + ∆ (I −D∆)−1

D
)

∆̇ (I −D∆)−1
.(14)

We then observe that

(15) I + ∆ (I −D∆)−1
D = I + ∆

( ∞∑
k=0

(D∆)k
)
D = I +

∞∑
k=1

(∆D)k = (I −∆D)−1
.

Combining (14) and (15) yields the result.

The following definition from [GO11, MO16] is useful.

Definition 3.2. Let λ be a simple eigenvalue of a matrix M with associated right
eigenvector x satisfying Mx = λx and left eigenvector y satisfying y∗M = λy∗. We
refer to (λ, x, y) as an RP-compatible eigentriple of M if y∗x is real and positive
and ‖x‖ = ‖y‖ = 1, and as a rightmost eigentriple if λ is a rightmost eigenvalue of
M in H.

Note that if (λ, x, y) is an RP-compatible eigentriple of M , so is (λ, eiθx, eiθy)
for any θ ∈ [0, 2π).

Then we have the following lemma.

1For a different approach to approximating r‖·‖C when n is large, namely the “implicit determi-
nant” method, see [FSVD14].
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Lemma 3.3. Given a smooth parametrization ∆(t) with ‖∆(t)‖F‖D‖2 < 1, let
λ(t) be a continuously varying simple eigenvalue of

M (∆(t)) = A+B∆(t) (I −D∆(t))−1
C.

Then λ(t) is differentiable with

(16) Re λ̇(t) =
1

y(t)∗x(t)
Re
(
u(t)∗∆̇(t)v(t)

)
,

where (λ(t), x(t), y(t)) is an RP-compatible eigentriple of M(∆(t)) and

u(t) = (I −∆(t)D)−T
BTy(t), v(t) = (I −D∆(t))−1

Cx(t).

Proof. Applying standard eigenvalue perturbation theory [HJ90, Theorem 6.3.12],
together with Lemma 3.1, we find that λ is differentiable with

(17) λ̇ =
y∗Ṁ (∆)x

y∗x
and Ṁ (∆) = B (I −∆D)−1 ∆̇ (I −D∆)−1

C,

where we omitted the dependence on t for conciseness. The result now follows.

Now define E(t) = ∆(t)/ε, so that ‖∆(t)‖F = ε when ‖E(t)‖F = 1. Then we
have

(18) Re λ̇(t) =
ε

y(t)∗x(t)
Re
(
u(t)∗Ė(t)v(t)

)
=

ε

y(t)∗x(t)

〈
Re (u(t)v(t)∗) , Ė(t)

〉
,

where for R,S ∈ Rp×m,

〈R,S〉 = TrRTS =
∑
i,j

RijSij ,

the trace inner product on Rp×m associated with the Frobenius norm. The condition
that ‖E(t)‖F is constant is equivalent to

(19)
d

dt
‖E(t)‖2F = 2

〈
E(t), Ė(t)

〉
= 0 ∀t.

Our aim, given t, is to choose Ė(t) to maximize (18) subject to the constraint (19),
leading to an optimization problem whose solution is given by the following lemma.
The proof is a straightforward application of first-order optimality conditions; see also
[GL13, Lemma 2.4].

Lemma 3.4. Let E ∈ Rp×m have unit Frobenius norm, and let u ∈ Cp, v ∈ Cm
be given complex vectors such that Re (uv∗) 6= 0. Under the assumption that mp > 1
(see the end of section 2.1), a solution to the optimization problem

(20) Z̃ = arg max
Z∈Ω

Re (u∗Zv), Ω = {Z ∈ Rp×m : ‖Z‖F = 1, 〈E,Z〉 = 0}

exists, and it satisfies

(21) τZ̃ =
(

Re (uv∗)− 〈E,Re (uv∗)〉E
)
,

where τ is the Frobenius norm of the matrix on the right-hand side in (21).
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This suggests consideration of the following ODE:

(22) Ė(t) = Re (u(t)v(t)∗)− 〈E(t),Re (u(t)v(t)∗)〉E(t),

with u(t) and v(t) defined by

(23) u(t) = (I − εE(t)D)−T
BTy(t), v(t) = (I − εDE(t))−1

Cx(t),

where (λ(t), x(t), y(t)) is a rightmost RP-compatible eigentriple for the matrixM(εE(t))
(see Definition 3.2). For the remainder of this paper, we make use of the following
assumption, which we note is generically true.

Assumption 3.5. Let E0 ∈ Rp×m satisfy ‖E0‖F = 1. We assume that the right-
most eigenvalue of M(εE0) in H is simple and unique.

3.2. Equilibrium points of the ODE. We now focus on the properties of the
ODE (22), in particular characterizing equilibrium points.

Theorem 3.6. Consider the differential equation (22) with initial condition E(0) =
E0. There exists tmax ∈ (0,∞] such that, for all t ∈ [0, tmax), the solution E(t) exists
and is unique and the following all hold:

(I) The rightmost eigenvalue λ(t) of M(εE(t)) in H is simple and unique.
(II) ‖E(t)‖F = 1.

(III) Re λ̇(t) ≥ 0.
Furthermore, at a given value t ∈ [0, tmax), the following three conditions are equiva-
lent:

(i) Re λ̇(t) = 0.
(ii) One of the following two mutually exclusive conditions holds:

(24) Re (u(t)v(t)∗) = 0 or E(t) =
Re (u(t)v(t)∗)
‖Re (u(t)v(t)∗) ‖F

.

(iii) Ė(t) = 0.

Proof. (I) Because the rightmost eigenvalue in H is simple and unique for t = 0
(by Assumption 3.5), the ODE is well defined and the same properties must hold for
sufficiently small positive t. (II) Taking the trace inner product of E(t) with the ODE
(22), we find that (19) holds when ‖E(t)‖F = 1, so the norm is preserved by the ODE.
(III) Substituting the ODE (22) into (18), we obtain from Cauchy–Schwarz that

(25) Re λ̇(t) =
ε

y(t)∗x(t)

[
‖Re (u(t)v(t)∗) ‖2F − 〈Re (u(t)v(t)∗) , E(t)〉2

]
≥ 0,

establishing (III). Clearly, equality holds in (25) at t if and only if one of the two alter-
natives in (24) holds, so (i) and (ii) are equivalent. Furthermore, from the definition
of the ODE (22), it is clear that (ii) implies (iii), while the only way the right-hand
side of (22) can be zero is if one of the two alternatives in (ii) holds. Hence, (ii) and
(iii) are equivalent.

Recalling that ∆(t) = εE(t), we know that the eigenvalues of M(∆(t)) all lie in
the spectral value set σR,‖·‖F

ε (A,B,C,D), with the rightmost eigenvalue λ(t) moving
monotonically to the right with respect to t. In particular, if E0 has unit Frobe-
nius norm and its rightmost eigenvalue λ(0) is simple and unique and is already a
locally rightmost point of the spectral value set σR,‖·‖F

ε (A,B,C,D), it must be the
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case that E0 is an equilibrium point of the ODE with Re λ̇(0) = 0, since Re λ̇(0) > 0
would violate the definition of a point being locally rightmost and Re λ̇(0) < 0 would
violate (3) in Theorem 3.6. The hope is that for E0 with λ(0) in the interior of
σ

R,‖·‖F
ε (A,B,C,D), the solution E(t) of the ODE will have its rightmost eigenvalue
λ(t) converging to a locally rightmost point of σR,‖·‖F

ε (A,B,C,D), although this can-
not be guaranteed, just as was the case with the algorithm of [GO11] for approximating
the rightmost points of pseudospectra, and algorithms developed in subsequent papers
(see section 1). A new consideration here is the possibility that Re (u(t)v(t)∗) = 0 at
an equilibrium point. We do not know whether convergence to such an equilibrium
point is possible or not. In the special case of pseudospectra, that is, with B = C = I
and D = 0, the outer product u(t)v(t)∗ reduces to y(t)x(t)∗, whose real part cannot
be zero, as was shown in [GL13, sec. 2.1.6]; in fact, the proof given there shows that
Re (y(t)x(t)∗)) has rank one when λ(t) is real and rank two when it is complex. Note
that the condition Re (u(t)v(t)∗) = 0 generalizes the notions of uncontrollability and
unobservability, because if λ(t) is unobservable, then BTy(t) = 0, implying u(t) = 0,
while if it is uncontrollable, then Cx(t) = 0, implying v(t) = 0.

The next lemma explicitly states formulas for Re (u(t)v(t)∗) and bounds on its
rank.

Lemma 3.7. Fix t < tmax, and let u ∈ Cp, v ∈ Cm be defined by (23) for some
vectors y(t) = y and x(t) = x. If λ = λ(t) ∈ R, then we can choose y, x, u, and v to
be real, with Re (uv∗) = uvT having rank one. If λ 6∈ R, set X = (Re x, Im x) ∈ Rn×2,
Y = (Re y, Im y) ∈ Rn×2, so Re(yx∗) = Y XT. Then

Re (uv∗) = (I − εED)−T
BTY XTCT (I − εDE)−T

with
rank (Re (uv∗)) = rank

(
BTY XTCT) ≤ 2.

Furthermore, if min(p,m) = 1, then rank (Re (uv∗)) ≤ 1.

Proof. The first statement follows from the definition (23), noting that E and D
are real. The rank results follow from submultiplicativity.

As already mentioned, the argument given in [GL13, sec. 2.1.6] shows that when
λ is not real, the matrix Y XT has rank two, so when min(p,m) ≥ 2, we can expect
that UV T will also have rank two for generic B and C.

A natural idea would be to attempt to approximate αR,‖·‖F
ε (A,B,C,D) by in-

tegrating the ODE (22) numerically to determine its equilibria, guaranteeing mono-
tonicity by step-size control. However, a serious drawback of this approach is the
fact that the solution E(t) (and hence most likely its discretization) does not pre-
serve the low-rank structure even if both the initial point E0 and the limit of E(t)
as t → ∞ both have rank two. Although it is possible to consider an ODE defined
on the manifold of rank-two matrices, as done in [GL13] and [GM15] for the special
case B = C = I, D = 0, we instead develop an efficient discrete iteration that is
nonetheless based on the ODE (22).

4. An iterative method to approximate the Frobenius-norm real spec-
tral value set abscissa. As in the previous section, assume ε is fixed with ε ‖D‖2 <
1. Following an idea briefly mentioned in [GM15], we consider the following implicit-
explicit Euler discretization of (22) with a variable step-size hk:

(26) Ek+1 = Ek + hk+1

(
Re (uk+1v

∗
k+1)−

〈
Ek+1,Re (uk+1v

∗
k+1)

〉
Ek

)
,
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where
uk+1 =

(
I − εEkD

)−T
BTyk, vk+1 =

(
I − εDEk

)−1
Cxk,

and (λk, xk, yk) is a rightmost RP-compatible eigentriple of M(εEk). The method is
clearly consistent and converges with order 1 with respect to hk.

Lemma 4.1. Let u0, v0 be given complex vectors with Re (u0v
∗
0) 6= 0, and set E0 =

Re (u0v
∗
0) /‖Re (u0v

∗
0) ‖F. Let hk = 1/‖Re (ukv∗k) ‖F. Then the difference equation

(26) has the solution

(27) Ek+1 =
Re
(
uk+1v

∗
k+1

)
‖Re

(
uk+1v∗k+1

)
‖F

as long as the rightmost eigenvalue of M(εEk) is simple and unique (considering only
those in H) and as long as Re

(
uk+1v

∗
k+1

)
6= 0 for all k = 0, 1, . . . .

Proof. The result is easily verified by substituting (27) into (26). The assumptions
ensure that the difference equation is well defined.

Equivalently, let Ek = UkV
T
k be the current perturbation, with ‖UkV T

k ‖F = 1,
and let (λk, xk, yk) be a rightmost eigenvalue of M(εUkV T

k ). Then by setting

Xk = (Re xk, Im xk), Yk = (Re yk, Im yk)

we can write (27) in the form

(28) Ek+1 = Uk+1V
T
k+1 with ‖Uk+1V

T
k+1‖F = 1,

where

Ûk+1 =
(
I − εUkV T

k D
)−T

BTYk,(29)

V̂k+1 =
(
I − εDUkV T

k

)−1
CXk,(30)

βk+1 = ‖Ûk+1V̂
T
k+1‖−1

F ,(31)

Uk+1 =
√
βk+1 Ûk+1,(32)

Vk+1 =
√
βk+1 V̂k+1.(33)

Since Ek = UkV
T
k has rank at most two, we can simplify these expressions using the

Sherman–Morrison–Woodbury formula [GV83] as follows:(
I − εUkV T

k D
)−1

= I + εUk
(
I − εV T

k DUk
)−1

V T
k D,(34) (

I − εDUkV T
k

)−1
= I + εDUk

(
I − εV T

k DUk
)−1

V T
k .(35)

Note that I − εV T
k DUk ∈ R2×2 and is invertible since ε‖D‖2 < 1 by assumption.

The second formula (35) can also be used to simplify the definition of the perturbed
system matrix in (3) as follows:

M(∆k) = M(εEk) = M(εUkV T
k )

= A+ εBUkV
T
k (I − εDUkV T

k )−1C

= A+ εBUkV
T
k (I + εDUk

(
I − εV T

k DUk
)−1

V T
k )C

= A+ (εBUk)
[
I + ε

(
V T
k DUk

) (
I − εV T

k DUk
)−1
] (
V T
k C
)
.(36)
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The product UkV T
k is never computed explicitly, but is retained in factored form, so

that the eigenvalues of M(εkUkV T
k ) with largest real part can be computed efficiently

by an iterative method. The Frobenius norm of the product can be obtained using
the following equivalence:

‖UV T‖F =
[
Tr
(
V UTUV T)] 1

2 =
[
Tr
((
UTU

) (
V TV

))] 1
2 ,

which requires only inner products to compute the 2× 2 matrices UTU and V TV .
As with the spectral value set abscissa (SVSA) iteration for complex spectral

values sets given in [GGO13], there is no guarantee that the full update step for the
real Frobenius-norm bounded case will satisfy monotonicity; that is, Reλk+1 > Reλk
may or may not hold, where λk is a rightmost eigenvalue of (36). However, the
line search approach to make a monotonic variant [GGO13, sec. 3.5] does extend to
the real rank-two iteration described above. Given the current perturbation UkV

T
k ,

with
∥∥UkV T

k

∥∥
F = 1, and Uk+1V

T
k+1 the updated perturbation described above, also

normalized so that
∥∥Uk+1V

T
k+1

∥∥
F = 1, let

ULS(t) := tUk+1 + (1− t)Uk and VLS(t) := tVk+1 + (1− t)Vk.

Consider the evolution of a continuously varying simple rightmost eigenvalue λLS(t)
defined on t ∈ [0, 1] with RP-compatible right and left eigenvectors x(t) and y(t) of

(37) M(∆LS(t)) = MLS(t) = A+B∆LS(t)(I −D∆LS(t))−1C,

where

(38) ∆LS(t) =
εULS(t)VLS(t)T

‖ULS(t)VLS(t)T‖

is a normalized interpolation between the current perturbation and the full step up-
date. Then by eigenvalue perturbation theory we have that

(39) Re λ̇LS(t) =
y(t)∗ṀLS(t)x(t)

y(t)∗x(t)
.

Though the derivation is quite lengthy [Mit14, sec. 6.3.3], it holds that if (39) is
negative, then flipping the signs of both Uk+1 and Vk+1 will also flip the sign of (39),
thus making it positive. Hence, a line search can be employed to find a t ∈ (0, 1) such
that Reλk+1 > Reλk is guaranteed to hold provided that (39) is not zero.

Algorithm SVSA-RF summarizes our algorithm to approximate αR,‖·‖F
ε (A,B,C,D),

the real structured Frobenius-norm bounded spectral value set abscissa, which by con-
struction is guaranteed to find a lower bound.

5. Approximating the real stability radius by hybrid expansion-con-
traction. Recall the relationship between the stability radius r‖·‖K (A,B,C,D) and
the spectral value set abscissa αK,‖·‖

ε (A,B,C,D) given in (12), which we write here
for the real Frobenius-norm case:

(40) r
‖·‖F
R (A,B,C,D) = min

(
‖D‖−1

2 , inf
{
ε : α

R,‖·‖F
ε (A,B,C,D) ≥ 0

})
.

The interesting case is when the second term is the lesser of these two terms, and for
the remainder of the paper we assume this is the case. It follows that r‖·‖FR (A,B,C,D)
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Algorithm SVSA-RF: (Spectral value set abscissa: Real Frobenius-norm)

Purpose: to approximate αR,‖·‖F
ε (A,B,C,D)

Input: ε ∈ (0, ‖D‖−1
2 ), U0 ∈ Rp×2, and V0 ∈ Rm×2, such that ‖U0V

T
0 ‖F = 1, along

with eigentriple (λ0, x0, y0), with λ0 a rightmost eigenvalue of M(εU0V
T
0 )

Output: final iterates Uk, Vk with ‖UkV T
k ‖F = 1 along with λk, a rightmost eigen-

value of M(εUkV T
k ), certifying that Reλk ≤ α

R,‖·‖F
ε (A,B,C,D)

1: for k = 0, 1, 2, . . . do
2: // Compute the new perturbation
3: Xk := (Re xk, Im xk)
4: Yk := (Re yk, Im yk)

5: Ûk+1 :=
(
I + εUk

(
I − εV T

k DUk
)−1

V T
k D

)T
BTYk

6: V̂k+1 :=
(
I + εDUk

(
I − εV T

k DUk
)−1

V T
k

)
CXk

7: // Normalize the new perturbation

8: βk+1 :=
[
Tr
((
ÛT
k+1Ûk+1

)(
V̂ T
k+1V̂k+1

))]− 1
2

9: Uk+1 :=
√
βk+1 Ûk+1

10: Vk+1 :=
√
βk+1 V̂k+1

11: // Attempt the full update step and, if necessary, do a line search
12: (λk+1, xk+1, yk+1) := a rightmost eigentriple of M(εUk+1V

T
k+1) using (36)

13: if Reλk+1 ≤ Reλk then
14: Find new λk+1 via line search using (39) to ensure Reλk+1 > Reλk
15: end if
16: end for

Note: The kth step of the iteration is well defined if UkV
T
k is nonzero and the rightmost eigenvalue

of (36) in H is simple and unique.

equals the infimum in (40) and from Remark 2.7 that this infimum is attained. Hence
α

R,‖·‖F
ε (A,B,C,D) = 0 for ε = r

‖·‖F
R (A,B,C,D). For brevity, we henceforth use ε?

to denote the real stability radius r‖·‖FR (A,B,C,D).
Let

(41) g(ε) = α
R,‖·‖F
ε (A,B,C,D).

We wish to find ε?, the root (zero) of the monotonically increasing continuous function
g. However, we do not have a reliable way to evaluate g: all we have is Algorithm
SVSA-RF, which is guaranteed to return a lower bound on the true value. Conse-
quently, if the value returned is negative, we have no assurance that its sign is correct.
On the other hand, if the value returned is positive, we are assured that the sign is cor-
rect. This observation underlies the hybrid expansion-contraction (HEC) algorithm
recently introduced in [MO16] for approximating the complex stability radius, which
we now extend to the real Frobenius-norm case.

5.1. Hybrid expansion-contraction. For any value of ε satisfying ε? < ε <
‖D‖−1

2 , there exists a real perturbation matrix E with ‖E‖F = 1 such that M(εE) has
an eigenvalue in the right half-plane. We assume that E has rank at most two (see the
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discussion at the end of section 2.1). See section 7.3 for how an initial destabilizing
perturbation εUV T can be found.

Let U ∈ Rp×2 and V ∈ Rm×2 be two matrices such that ‖UV T‖F = 1. Consider
the following matrix family, where U and V are fixed and 0 < ε < ‖D‖−1

2 :

MUV (ε) := M(εUV T) = A+BεUV T(I −DεUV T)−1C,

and define the function

(42) gUV (ε) := α (MUV (ε)) ,

the spectral abscissa of MUV (ε). Unlike g, this function is relatively easy to evaluate
at a given ε, since all that is required is to compute the rightmost eigenvalue of the
matrix MUV (ε), something that we assume can be done efficiently by an iterative
method such as the MATLAB function eigs, exploiting the equivalence (36). Now,
as discussed above, suppose that εUB is known with MUV (εUB) having an eigenvalue
in the right half-plane. There exists εc ∈ (0, εUB) such that gUV (εc) = 0 because gUV
is continuous, gUV (εUB) > 0, and gUV (0) < 0 (as A is stable). The contraction phase
of the HEC algorithm finds such an εc by a simple Newton-bisection method, using
the derivative of gUV (ε) given in section 5.2 below. Note that by definition of ε?, it
must be the case that ε? ≤ εc.

Once the contraction phase delivers εc with the rightmost eigenvalue of MUV (εc)
on the imaginary axis, the expansion phase then “pushes” the rightmost eigenvalue
of M(εUV T) back into the right half-plane using Algorithm SVSA-RF, with ε = εc
fixed and updating only the perturbation matrices U and V . The algorithm repeats
this expansion-contraction process in a loop until SVSA-RF can no longer find a
new perturbation that moves an eigenvalue off the imaginary axis into the right half-
plane. Following [MO16], the method is formally defined in Algorithm HEC-RF. For
an illustration of the main idea in the context of the complex stability radius, see
[MO16, Fig. 4.1].

Convergence results for the original HEC algorithm developed for the complex sta-
bility radius were given in [MO16, Theorem 4.3]. The basic convergence result, that,
under suitable assumptions, the sequence {εk} converges to some ε̃ ≥ ε? and the
sequence {Reλk} converges to zero, can be extended to the real Frobenius-norm case
without difficulty. However, the part that characterizes limit points of the sequence
{Reλk} as stationary points or local maxima of the norm of the transfer function
on the stability boundary does not immediately extend to the real Frobenius-norm
case, because instead of ‖G(iω)‖, we would have to consider the potentially discon-
tinuous function µ‖·‖FR (G(iω)). (See the discussion following Definition 2.2, as well as
[QBR+95, sec. 3].)

5.2. The derivatives of gUV and g. The contraction phase of the algorithm
needs the derivative of gUV defined in (42) to implement the Newton-bisection method
to find a root of gUV . As we shall see, it is also of interest to relate this to the
derivative of g defined in (41), although this is not actually used in the algorithm.
The key tool for obtaining both is Lemma 3.1, which presented the derivative of
∆(t) (I −D∆(t))−1 with respect to t. Here, the same matrix function depends on ε.
We denote differentiation with respect to ε by ′.

Theorem 5.1. Let O ⊂ (0, ‖D‖−1
2 ) be open, and suppose that, for all ε ∈ O, the

rightmost eigenvalue λUV (ε) of MUV (ε) in H is simple and unique. Then, for all
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Algorithm HEC-RF: (Hybrid expansion-contraction: Real Frobenius-norm)

Purpose: to approximate r‖·‖FR (A,B,C,D)
Input: ε0 ∈ (0, ‖D‖−1

2 ) and matrices U ∈ Rp×2 and V ∈ Rm×2 with ‖UV T‖F = 1
and gUV (ε0) > 0, along with λ0, a rightmost eigenvalue of MUV (ε0) in the right
half-plane

Output: final value of sequence {εk} such that λk is a rightmost eigenvalue of
M(εkUV T) sufficiently close to the imaginary axis but in the closed right half-
plane, certifying that εk ≥ r

‖·‖F
R (A,B,C,D)

1: for k = 0, 1, 2, . . . do
2: Contraction: call a Newton-bisection zero-finding algorithm to compute

εc ∈ (0, εk] so that gUV (εc) = 0, along with λc, a rightmost eigenvalue of
MUV (εc) on the imaginary axis.

3: Expansion: call Algorithm SVSA-RF with input εc, U , V to compute Ue, Ve
with ‖UeV

T
e ‖F = 1 and λk+1, a rightmost eigenvalue of M(εcUeV

T
e ), satisfying

Reλk+1 ≥ Reλc = 0.
4: Set εk+1 := εc, U := Ue, and V := Ve.
5: end for

Note: In practice, we pass eigentriples computed by the contraction phase into the expansion phase
and vice versa.

ε ∈ O, gUV is differentiable at ε with
(43)

g′UV (ε) =
Re
(

(yUV (ε)∗BU)
[
I + ε

(
V TDU

) (
I − εV TDU

)−1
]2 (

V TCxUV (ε)
))

yUV (ε)∗xUV (ε)
,

where (λUV (ε), xUV (ε), yUV (ε)) is a rightmost RP-compatible eigentriple of MUV (ε).

Proof. Since λUV (ε) is simple and unique, xUV (ε) and yUV (ε) are well defined
(up to a unimodular scalar). Applying Lemma 3.1 with ∆(ε) ≡ εUV T, and using
(34)–(35) and Ξ := I − εV TDU , we have

M ′UV (ε) = B(I − εUV TD)−1UV T(I − εDUV T)−1C(44)

= B(I + εUΞ−1V TD)UV T(I + εDUΞ−1V T)C

= BU(I + εΞ−1V TDU)(I + εV TDUΞ−1)V TC

= BU
[
I + ε

(
V TDU

) (
I − εV TDU

)−1
]2
V TC,

noting that Ξ−1 and V TDU commute, since

V TDU(I − εV TDU)−1 = V TDU

∞∑
k=0

(εV TDU)k = (I − εV TDU)−1V TDU.

Using standard eigenvalue perturbation theory, as in the proof of Lemma 3.3, we have

(45) g′UV (ε) = Reλ′UV (ε) =
Re (yUV (ε)∗M ′UV (ε)xUV (ε))

yUV (ε)∗xUV (ε)
,



1338 GUGLIELMI, GÜRBÜZBALABAN, MITCHELL, AND OVERTON

from which the result follows.

Now we obtain the derivative of the function g defined in (41).

Theorem 5.2. Let O ⊂ (0, ‖D‖−1
2 ) be open. Suppose the following for all ε ∈ O:

(a) λ(ε) is the unique rightmost point in H of σR,‖·‖F
ε (A,B,C,D).

(b) E(ε), with ‖E(ε)‖F = 1, is a smooth matrix function of ε such that λ(ε) from
(a) is a simple eigenvalue of M(εE(ε)). (It must also be a unique rightmost
eigenvalue of M(εE(ε)) in H since otherwise (a) would not hold.)

(c) Re (u(ε)v(ε)∗) 6= 0, where

(46) u(ε) = (I − εE(ε)D)−TBTy(ε), v(ε) = (I − εDE(ε))−1CTx(ε),

and (λ(ε), x(ε), y(ε)) is an RP-compatible eigentriple of M(εE(ε)).
Then, for any ε ∈ O,

(47) g′(ε) =
‖Re (u(ε)v(ε)∗)‖F

y(ε)∗x(ε)
.

Proof. In this proof, we again apply Lemma 3.1 with ∆(t) now replaced by εE(ε).
Let N(ε) = M(εE(ε)). We obtain

N ′(ε) = B(I − εE(ε)D)−1(E(ε) + εE′(ε))(I − εDE(ε))−1C.

Again using standard eigenvalue perturbation theory, we have

g′(ε) = Reλ′(ε) =
Re (y(ε)∗N ′(ε)x(ε))

y(ε)∗x(ε)

=
Re (u(ε)∗E(ε)v(ε)) + εRe (u(ε)∗E′(ε)v(ε))

y(ε)∗x(ε)

=
〈E(ε),Re (u(ε)v(ε)∗)〉+ ε〈E′(ε),Re (u(ε)v(ε)∗)〉

y(ε)∗x(ε)
.(48)

Now consider the solution of the differential equation (22) with initial condition E0 =
E(ε). Because λ(0) is the rightmost point of σR,‖·‖F

ε (A,B,C,D), E0 must be an
equilibrium point (see the discussion after Theorem 3.6). Therefore, by Theorem 3.6,
as the case Re (u(ε)v(ε)∗) = 0 is ruled out by the assumptions, we have the identity

E(ε) =
Re (u(ε)v(ε)∗)
‖Re (u(ε)v(ε)∗)‖F

.

Plugging this identity into (48) and using the fact that 〈E′(ε), E(ε)〉 = 1
2
d‖E(ε)‖2F

dε = 0,
we conclude that (47) holds.

We now relate g′UV (ε) to g′(ε).

Theorem 5.3. Using the notation established above, suppose the assumptions of
the two previous theorems apply for the same open interval O and that for some specific
ε ∈ O,

(49) UV T = E(ε) =
Re (u(ε)v(ε)∗)
‖Re (u(ε)v(ε)∗)‖F

,

so that the matrices MUV (ε) and M(εE(ε)) are the same and the eigentriples (λUV (ε),
xUV (ε), yUV (ε)) and (λ(ε), x(ε), y(ε)) coincide, with gUV (ε) = g(ε). Then

g′UV (ε) = g′(ε).
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Proof. Using (45), (44), and (49), we have

g′UV (ε) =
Re
(
y(ε)∗

(
B(I − εE(ε)TD)−1E(ε)(I − εDE(ε))−1C

)
x(ε)

)
y(ε)∗x(ε)

.

So, using (46) and (47), we obtain

g′UV (ε) =
Re (u(ε)∗E(ε)v(ε))

y(ε)∗x(ε)
=
‖Re (u(ε)v(ε)∗)‖F

y(ε)∗x(ε)
= g′(ε).

This result is important, because at the start of the contraction phase of Algorithm
HEC-RF, assuming that the expansion phase has returned a locally rightmost point
of σR,‖·‖F

ε (A,B,C,D), we have that (49) holds. Hence, the first Newton step of the
contraction phase, namely a Newton step for finding a zero of gUV , is equivalent to
a Newton step for finding a zero of g, which is the ultimate goal. For this reason,
under a suitable regularity condition, Algorithm HEC-RF is actually quadratically
convergent. We omit the details here, but a convergence rate analysis similar to
that given in [MO16, Theorem 4.4] for the complex stability radius hybrid expansion-
contraction algorithm holds for Algorithm HEC-RF too.

6. Discrete-time systems. We now briefly summarize the changes to our re-
sults and algorithms that are needed to handle, instead of (1)–(2), the discrete-time
system

xk+1 = Axk +Buk,

yk = Cxk +Duk,

where k = 1, 2, . . . . The definitions of the transfer matrix function, spectral value sets,
and real-µ functions in section 2.1 remain unchanged. In section 2.2, the stability
region is the open unit disk D− instead of the open left half-plane C−, and the
definition of the stability radius must be adjusted accordingly. In section 2.3, instead
of the spectral abscissa α and spectral value set abscissa αε, we require the spectral
radius ρ and spectral value set radius ρK,‖·‖

ε , which are defined by maximization of |λ|
instead of Reλ over the spectral value set.2 Now, instead of “rightmost” points, we
search for “outermost” points.

In section 3, it is convenient to extend Definition 3.2 as follows: (λ, x, y) is an
RP(z)-compatible eigentriple of M if λ is a simple eigenvalue of M , x and y are corre-
sponding normalized right and left eigenvectors, and y∗x is a real positive multiple of z.
Then, instead of (16), we have, taking (λ(t), x(t), y(t)) to be an RP(λ(t))-compatible
eigentriple,

d

dt
|λ(t)| =

Re
(
λ(t)λ̇(t)

)
|λ(t)|

=
1

|y(t)∗x(t)|
Re
(
u(t)∗∆̇(t)v(t)

)
.

The ODE (22) then remains unchanged, except that the eigentriple (λ(t), x(t), y(t)) is
an outermost RP(λ(t))-compatible eigentriple of M(εE(t)) instead of a rightmost RP-
compatible eigentriple. Theorem 3.6 also holds as before, with the same change. In
section 4, we replace Algorithm SVSA-RF by Algorithm SVSR-RF (spectral value set

2Recall again the completely different usage of “radius” in these names; the stability radius refers
to the data space and the spectral radius to the complex plane.
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radius: real Frobenius-norm), whose purpose is to approximate ρR,‖·‖F
ε (A,B,C,D).

The only change that is needed is to replace rightmost RP-compatible eigentriple
(λk, xk, yk) by outermost RP(λk)-compatible eigentriple (λk, xk, yk). To ensure that
|λk+1| ≥ |λk|, a line search can again be used, as explained in [Mit14, sec. 6.3.3]. The
algorithm produces λk, certifying that |λk| ≤ ρ

R,‖·‖F
ε (A,B,C,D).

In section 5, since the stability region is now the open unit disk D−, instead of
(41) we have g(ε) = ρ

R,‖·‖F
ε (A,B,C,D) − 1, and instead of (42) we have gUV (ε) :=

ρ (MUV (ε)) − 1. The derivatives of gUV in (45) and g in (47) remain unchanged
except for the RP-compatibility change and the replacement of y∗x by |y∗x| in both
denominators. In addition to this alternate RP-compatibility definition, Algorithm
HEC-RF is changed as follows: rightmost, right half-plane, and imaginary axis are
changed to outermost, C\D−, and unit circle, respectively.

7. Implementation and experiments. We implemented Algorithm HEC-RF
by extending the open-source MATLAB code getStabRadBound [MO16, sec. 7], which
is the implementation of the original HEC algorithm for approximating the com-
plex stability radius. Our new code supports approximating both the complex and
real stability radii, for both continuous-time and discrete-time systems, although for
brevity, we continue to refer primarily only to the continuous-time case. We simi-
larly adapted the related fast upper bound algorithm [MO16, sec. 4.4], which aims to
quickly find a destabilizing perturbation necessary for initializing Algorithm HEC-RF.
This “greedy” strategy aims to take steps as large as possible toward a destabilizing
perturbation by alternating between increasing ε and taking a single SVSA-RF up-
date step of the perturbation matrices U and V . In the course of this work, we also
significantly improved the convergence criteria of getStabRadBound and made several
improvements to help accelerate the algorithm. All experiments were performed using
MATLAB R2015a running on a Macbook Pro with an Intel i7-5557U dual-core CPU
and 16GB of RAM, running Mac OS X v10.11.5.

7.1. Algorithm HEC-RF and its subroutine SVSA-RF in practice.

7.1.1. Convergence criteria and tolerances. In theory, Algorithm HEC-RF
has converged once it has found a perturbation εUV T such that λ ∈ σ(M(εUV T)) is
a locally rightmost point of σR,‖·‖F

ε (A,B,C,D) and Reλ = 0. However, in practice
it is not so straightforward, and we have found that the original convergence criteria
outlined in [GGO13] and [MO16], respectively, for Algorithms SVSA and HEC for
complex spectral value sets, can sometimes be inadequate. While we will continue
to refer to HEC-RF and SVSA-RF, the following discussion of improved convergence
criteria also applies directly to the complex spectral value set versions of these algo-
rithms. Describing the convergence criteria in full is a somewhat lengthy and technical
discussion, so we instead present a higher-level overview here and then use Appendix A
to further discuss these crucial matters for implementing a practicable and reliable
version of the HEC-RF algorithm, along with pseudocode.

In order to ensure that the iterates of HEC-RF always remain in the closed right
half-plane (a necessary condition for HEC-RF’s convergence theory), the Newton-
bisection-based contraction phase actually solves a slightly shifted version of the root
problem given by (42), that is, so it converges to a point on the vertical line x = 0.5τε,
instead of on the imaginary axis. We consider the contraction phase converged if it
finds a point λc such that Reλc ∈ [0, τε]. The shift allows acceptable iterates to
be obtained when the contraction phase converges from either the right or left side;
for the unshifted problem, convergence from the left would not yield an acceptable
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iterate. For more details on this shift, see the discussion of τε in [MO16, sec. 7.1].
Detecting whether or not the subroutine SVSA-RF has indeed converged to a

locally rightmost point is less straightforward, as even in the case of the complex
spectral value sets, computing the first-order necessary conditions for locally rightmost
points is too expensive (under the assumption that linear solves involving matrix A
are prohibitively costly). Instead, the implementation of SVSA-RF terminates when it
detects that its progress has essentially come to a halt, specifically when the following
condition holds:

(50)
|λk+1 − λk|
|λk|

≤ τuv,

where λk ∈ C in this context is an iterate of SVSA-RF and τuv ∈ R+ is the expansion
phase tolerance. Note that it is important that the rate of progress be measured both
as a relative change and as a distance in the complex plane; for more details, see
Appendix A. Of course, if either λk+1 or λk is zero, our proposed measure is not
meaningful. In this case, we simply skip the convergence check, noting that it can, at
most, only cause two additional steps to be taken. Furthermore, since in the context
of HEC-RF the iterates of SVSA-RF are always in the closed right half-plane and
typically never exactly on the imaginary axis, this case almost never occurs. Finally,
if matrices A, B, C, and D are all real (which is assumed for the real stability radius
but not for the complex stability radius), we must ensure that distance due to complex
conjugacy is not measured, which is done by flipping signs of the imaginary parts as
necessary.

Given that SVSA-RF is initialized at a point λc with Reλc ∈ [0, τε], we then say
that Algorithm HEC-RF has converged if subroutine SVSA-RF satisfies its conver-
gence criteria (50) and the total amount of rightward expansion from λc is at most
τε, that is, Algorithm HEC-RF has converged if it finds a locally rightmost point λ
such that Reλ ∈ [0, 2τε].

While HEC-RF is generically quadratically convergent, its subroutine SVSA-RF
typically only exhibits linear convergence. To mitigate incurring the slow convergence
of SVSA-RF, particularly as HEC-RF may call it multiples times, an early contrac-
tion strategy was proposed in [MO16, sec. 4.3] so that initial expansion phases will
generally terminate early, before locally rightmost points have been attained, since
it is only necessary to find a locally rightmost point to high accuracy on the very
last expansion. This behavior is governed by the expansion relative-step-size toler-
ance τ rss

uv ∈ [0, 1), which says that SVSA-RF should terminate early if the size of the
current step falls below some fraction of the largest step taken so far, that is,

(51) |λk+1 − λk| < τ rss
uv max

0≤j<k
|λj+1 − λj |,

where in this context λk ∈ C is again an iterate of SVSA-RF. This measure is slightly
different from the one used in [MO16], since our improved measure checks distances in
the complex plane modulo complex conjugacy. Although enabling early contraction
technically reduces HEC-RF’s theoretical rate of convergence from quadratic to su-
perlinear, it was found in the complex stability radius case that the number of SVSA
iterates incurred was generally reduced so significantly that HEC was usually much
faster with early contraction enabled, with respect to wall-clock time.

Similarly, the contraction phase can also optionally terminate early when it has at
least made significant progress, as accurate contraction back to a point λc such that
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Reλc ∈ [0, τε] is also only necessary on the very last contraction phase. Specifically,
the contraction phase can terminate early once one of its iterates λk satisfies

(52) Reλk ∈ [0, τ rss
ε Reλ0],

where τ rss
ε ∈ [0, 1) and λk ∈ C in this context is now an iterate of the Newton-bisection

contraction phase.
As the contraction and expansion phases can terminate in multiple ways, detecting

whether or not HEC-RF has actually converged is somewhat involved, and we leave
the remaining discussion of how to properly implement it to Appendix A. For the
experiments in this paper, we set τε = τuv = 10−12. We tested the code in two
configurations, once with early expansion and contraction disabled, and again with
them both enabled; in the latter case, we set τ rss

ε = τ rss
uv = 10−2.

7.1.2. Extrapolating the iterates of Algorithm SVSA-RF. Although en-
abling early contraction can help to reduce the number of iterates incurred by the
linearly convergent SVSA-RF when used as a subroutine of HEC-RF, the number of
SVSA-RF iterates may still sometimes be large, and, of course, early contraction is
not relevant if one wishes to approximate the spectral value set abscissa. For complex
spectral value sets, an implicit extrapolation procedure was proposed in [MO16] and
[Mit14, sec. 4.2] to accelerate the rank-one perturbation matrix sequence {ukv∗k} of
Algorithm SVSA, where uk ∈ Cp and vk ∈ Cm have unit norm. As extrapolating
the entire matrix sequence {ukv∗k} directly could be costly, since it has mp complex-
valued entries, the procedure instead applies vector extrapolation to a chosen row and
column of {ukv∗k}, using, say, the last five iterates, to produce extrapolated row r?
and column c?, for a total of only m + p extrapolated values. Note that it is gener-
ally not possible to extrapolate vector sequences {uk} and {vk} directly, since even
though ukv

∗
k is unique, uk and vk are only unique up to a unimodular scalar, and so

{uk} and {vk} may not actually be converging individually. Finally, after computing
extrapolations r? and c?, it is possible to cheaply construct a pair of unit norm vectors
u? and v? such that u?v∗? , we hope, best recovers row r? and column c?. For more
details, see [Mit14, sec. 4.2].

For the case of real spectral value sets, we extended this implicit extrapolation
strategy so that it can also handle matrix sequences {UkV T

k } where each UkV
T
k has

rank at most two. As describing this would also be a rather lengthy and technical
digression, we refer the reader to [Mit14, sec. 6.3.5] for full details and only briefly
sketch the main differences here. To implicitly extrapolate sequences of up-to-rank-
two matrices, we perform vector extrapolation four times, on two chosen rows and
two chosen columns of the evolution {UkVk}T. Having obtained extrapolated rows r1
and r2 and extrapolated columns c1 and c2, it is also possible to cheaply construct a
new pair U? ∈ Rp×2 and V? ∈ Rm×2 such that

∥∥U?V T
?

∥∥
F = 1 and U?V

T
? , we hope,

best recovers the pair of extrapolated rows and the pair of extrapolated columns. If
the rightmost eigenvalue of M(εU?V T

? ) does not satisfy monotonicity, that is, it is not
to the right of the current iterate, then the extrapolation is rejected. Given extrap-
olations r1, r2, c1, and c2, we also investigated construction of U? and V? iteratively
by specifying it as a constrained optimization problem, where the objective is to best
recover the extrapolated rows and columns such that

∥∥U?V T
?

∥∥
F = 1. However, this

was much more expensive than our direct procedure, and we did not observe any
improved extrapolation performance; hence, we only used our direct procedure for
getStabRadBound. For more details on the optimization-based alternative, we refer
the reader to the supplementary material.
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7.1.3. Interpolating iterates of Algorithm SVSA-RF. In the case that the
full SVSA-RF update step satisfies monotonicity, that is, ReλLS(1) − ReλLS(0) > 0
holds for the rightmost eigenvalue of (37) at t = 0 and t = 1, it may still happen
that there exists an even better step for some t̂ ∈ (0, 1). Since we have the values
of ReλLS(t) at t = 0 and t = 1 and Re λ̇LS(0), we can fit an interpolating quadratic
polynomial to predict if an intermediary value t = t̂ would yield an even better step
than the full t = 1 step. If this quadratic interpolation-derived step is predicted to be
at least 1.5 times larger than ReλLS(1)−ReλLS(0), then the rightmost eigenvalue of
(37) at t = t̂ is computed, and if ReλLS(t̂) > ReλLS(1) does hold, then the interpo-
lated step is taken in lieu of the full step. Note that we do not use cubic interpolation
because we would need to first compute Re λ̇LS(1); as doing so requires an additional
eigensolve, the predictions would no longer be negligibly cheap to compute.

7.1.4. Code optimizations. We improved the getStabRadBound code so that
it now only computes left eigenvectors on demand, instead of always computing eigen-
triples, as was done in previous versions of the code. If the resulting rightmost eigen-
value of M(∆) for some perturbation ∆ encountered by the algorithm does not satisfy
monotonicity, then computing the corresponding left eigenvector is unnecessary; left
eigenvectors need only be computed at points accepted by the algorithm, since it is
only at such points that derivatives of eigenvalues are used. This optimization essen-
tially halves the cost of all incurred line searches in both Algorithm SVSA-RF and
step 3 of the fast upper bound procedure, while it also halves the cost of computing
extrapolation and interpolation steps that end up being rejected.

7.2. Plotting complex and real spectral value sets. In order to verify that
Algorithm SVSA-RF does converge to locally rightmost points in practice, we at-
tempted to visualize Frobenius-norm bounded real spectral value sets. For complex
spectral value sets, it is straightforward to compute the boundary of σC,‖·‖2

ε (A,B,C,D)
for a given ε; by Theorem 2.5, one needs to just evaluate ‖G(s)‖−1

2 on a grid for a
desired range of s ∈ C and use the MATLAB function contour. However, in the
real Frobenius-norm case, one would have to evaluate µ‖·‖FR (G(s))−1, but we lack a
method for doing that. Instead, our Frobenius-norm bounded real spectral value set
visualizations rely on a variety of sampling techniques.

For a given value of ε, we may easily produce sample points of σR,‖·‖F
ε (A,B,C,D)

by randomly generating a sample perturbation matrix ∆s (using randn()) such that
‖∆s‖F = ε and then plotting the spectrum of M(∆s) in the complex plane. How-
ever, randomly generated perturbations generally only produce eigenvalues in the
interior of σR,‖·‖F

ε (A,B,C,D) and rarely on the boundary, let alone near locally right-
most points, even for a large number of samples matrices. As such, we also relied
on using perturbation matrices generated via quasi-random Sobol sequences; while
Sobol-derived samples did better capture the eigenvalues of σR,‖·‖F

ε (A,B,C,D) away
from the interior, the combination of both random and quasi-random sampling was
often still not effective for capturing the regions explored by Algorithm SVSA-RF.
Thus, we additionally considered sampling the real spectral value sets by considering
small perturbations to the matrix sequence {UkV T

k } produced by Algorithm SVSA-
RF, which we collected for all our experiments. If Algorithm SVSA-RF has indeed
converged to a locally rightmost point λ of σR,‖·‖F

ε (A,B,C,D), then small pertur-
bations to its matrix sequence cannot produce a nearby eigenvalue to the right of λ.
Furthermore, if the iterates λk of Algorithm SVSA-RF are on or near the boundary of
σ

R,‖·‖F
ε (A,B,C,D), then small perturbations to the matrices of {UkV T

k } will produce



1344 GUGLIELMI, GÜRBÜZBALABAN, MITCHELL, AND OVERTON

Fig. 1. Test problem ROC3. Selected iterates of Algorithm HEC-RF, namely the first and last
expansion phases (ε1 and ε4), are depicted as two sequences of x’s connected by line segments, re-
spectively in red and orange, in a close-up view (left) and in a wide view (right). The corresponding
sets of point clouds for σR,‖·‖F

ε (A,B,C,D), in green for ε = ε1 and in blue for ε = ε4, were visual-
ized by the techniques described in section 7.2, with each using 100,000 randomly generated matrices,
another 100,000 quasi-random matrices (generated via Sobol sequences), and finally 100,000 ran-
domly perturbed versions of the expansion phases’ sequences of matrices. The 200,000 random and
quasi-random samples were unable to capture the region near the locally rightmost point found by
Algorithm HEC-RF; the points from these samples only appear in the wider view on the right, in
small regions about the eigenvalues of A (represented by the black +’s). The sample points shown in
the close-up view on the left are all from the randomly perturbed versions of the expansion phases’
matrix iterates, demonstrating Algorithm HEC-RF’s ability to efficiently find extremal rightmost
values in real spectral value sets. The solid curves depict the boundaries of the corresponding sets
σ

C,‖·‖2
ε (A,B,C,D). As can be readily seen, the iterates of Algorithm HEC-RF converged to a lo-

cally rightmost point of σR,‖·‖F
ε (A,B,C,D), ε = ε4, close to the imaginary axis (represented by the

dashed vertical line) and in the interior of σC,‖·‖2
ε (A,B,C,D).

eigenvalue samples that highlight the spectral value set boundary in this region.

7.3. Numerical evaluation of Algorithm HEC-RF. We tested our new ver-
sion of getStabRadBound on the 34 small-scale and 14 large-scale linear dynamical
systems used in the numerical experiments of [GGO13] and [MO16], noting that the
system matrices (A,B,C,D) for these problems are all real-valued. The dimensions
of the A matrices range from 8 to 351 for the small-scale examples and 1006 to 24398
for the large-scale examples; for more details, see [GGO13, Tables 5.1–5.4]. We ran
the code in two different configurations for each problem: once in its “pure” HEC
form, which we call “v1,” and a second time using an “accelerated” configuration,
which we call “v2,” where extrapolation, interpolation, and both early contraction
and expansion features were all enabled (all of which are described in section 7.1).
The “v2” configuration was set to attempt extrapolation every fifth iteration, from the
previous five iterates. For all other parameters, we used getStabRadBound’s default
user options. That Algorithm SVSA-RF does converge to locally rightmost points
(or outermost for SVSR-RF) was supported by examining our real spectral value set
visualizations (described in section 7.2) for all 34 problems in our small-scale test set.
See Figures 1 and 2 for two such plots.

As Algorithm HEC-RF is, to the best of our knowledge, the only available method
to approximate the Frobenius-norm bounded real stability radius, we simply report
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Fig. 2. Test problem ROC9. Selected iterates of Algorithm HEC-RF, namely the first and
last expansion phases (ε1 and ε5), are depicted as two sequences of x’s connected by line segments,
respectively in red and orange, in a close-up view (left) and in a wide view (right). The corresponding
sets of point clouds for σR,‖·‖F

ε (A,B,C,D) and set boundaries of σC,‖·‖2
ε (A,B,C,D), in green for

ε = ε1 and in blue for ε = ε5, were plotted in a manner similar to that described in Figure 1 and
section 7.2. The black + represents an eigenvalue of A. As can be seen, the iterates of Algorithm
HEC-RF converged to a locally rightmost point of σR,‖·‖F

ε (A,B,C,D), with ε = ε5, close to the
imaginary axis (represented by the dashed vertical line), though in this case, it is clear that this
is not a globally rightmost point. Interestingly, the corresponding sets σC,‖·‖2

ε (A,B,C,D) have no
locally rightmost points near the sequence of locally rightmost points of σR,‖·‖F

ε (A,B,C,D) found by
Algorithm HEC-RF, highlighting the striking difference between complex and real spectral value sets.
In fact, for ε = ε1, it is seen that σC,‖·‖2

ε (A,B,C,D) actually has a hole below and to the right of
the locally rightmost point of σR,‖·‖F

ε (A,B,C,D) found by Algorithm HEC-RF; the hole is depicted
by the small green ellipse in the right plot, a portion of which can be seen in the left plot.

the better of the two upper bounds εv1 and εv2, respectively produced by “v1” and
“v2” variants of our method, to 12 digits for each test problem, along with their rel-
ative difference and statistics on the computational cost, in Tables 1–3. We observe
that both variants of the code tend to produce approximations with high agreement,
showing that there seems to be little to no numerical penalty for enabling the acceler-
ation features. In fact, on two examples (AC6 and ROC6, both discrete-time systems),
we see that the accelerated version of the code actually produced substantially better
approximations, with improvement to their respective second-most significant digits.
Furthermore, the accelerated “v2” configuration does appear to be effective in re-
ducing the number of eigensolves incurred on most problems, though there are two
notable exceptions to this: ROC5 (continuous-time) and ROC6 (discrete-time). It is
worth noting that many of the small-scale test problems have such tiny dimensions
that a reduction in eigensolves does not always correspond with a speedup in terms
of wall-clock time (and can sometimes seemingly paradoxically have increased run-
ning times due to the inherent variability in collecting timing data). However, on
only moderate-sized problems, such as CBM, CSE2, and CM4 (all continuous-time), we
start to see that the running time is dominated by the number of eigensolves. This
correspondence is readily apparent in the large and sparse examples in Table 3.

Though it is difficult to tease out the effects of the different acceleration options,
since they interact with each other, we were able to determine that the early expan-
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Table 1
The “Iters” columns show the number of HEC-RF iterations until termination for the “v1”

and “v2” configurations of getStabRadBound; note that these can be fractional since the method
may quit after either a contraction or an expansion phase. The “ # Eig” columns show the total
number of eigensolves (the sum of the number of right and left eigenvectors computed) incurred
while the “Time (secs)” columns show the elapsed wall-clock time in seconds per problem for both
code variants. The left column under the “RSR approximation” heading shows the better (smaller)
of the two real stability radius approximations εv1 and εv2, respectively computed by “v1” and
“v2” versions of the code. The rightmost column shows the relative difference between these two
approximations, with positive values indicating that the “v2” code produced a better approximation.
Relative differences below the 10−12 optimality tolerances used for the code are not shown.

Small dense problems: Continuous-time

Iters # Eig Time (secs) RSR approximation

Problem v1 v2 v1 v2 v1 v2 min{εv1, εv2} (εv1 − εv2)/εv1

CBM 3 3 122 79 8.646 5.577 4.46769464697× 100 −8.5× 10−12

CSE2 7 7 223 117 0.643 0.386 4.91783643704× 101 -
CM1 2 3 91 81 0.198 0.203 1.22474487041× 100 -
CM3 3 4 126 108 1.063 0.952 1.22290355805× 100 -
CM4 3 4 222 181 8.181 6.680 6.30978638860× 10−1 -
HE6 11 9 20852 9972 13.828 8.305 2.02865555290× 10−3 +1.5× 10−10

HE7 4 6 492 248 0.406 0.322 2.88575420548× 10−3 −3.2× 10−12

ROC1 2 3 93 78 0.127 0.150 9.11416570667× 10−1 +2.3× 10−12

ROC2 3 3 98 83 0.136 0.161 7.49812117968× 100 +1.0× 10−10

ROC3 4 4 204 117 0.211 0.209 7.68846259016× 10−5 −3.5× 10−11

ROC4 1 1 40 40 0.084 0.134 3.47486815789× 10−3 -
ROC5 5.5 11 263 426 0.226 0.390 1.02041223979× 102 −8.0× 10−9

ROC6 4 4 149 80 0.174 0.182 3.88148973329× 10−2 -
ROC7 3 3 142 107 0.165 0.163 8.96564880558× 10−1 -
ROC8 3 4 160 114 0.183 0.194 2.08497314619× 10−1 +4.7× 10−7

ROC9 5 8 235 173 0.223 0.297 4.20965764059× 10−1 -
ROC10 1 1 26 26 0.079 0.096 1.01878607021× 101 -

Table 2
For a description of the columns, see the caption of Table 1.

Small dense problems: Discrete-time

Iters # Eig Time (secs) RSR approximation

Problem v1 v2 v1 v2 v1 v2 min{εv1, εv2} (εv1 − εv2)/εv1

AC5 3 4 244 197 0.250 0.234 2.01380141605× 10−2 +6.3× 10−12

AC12 2 2 35 51 0.098 0.131 9.33096040564× 10−2 -
AC15 5 6 143 94 0.178 0.179 4.22159665084× 10−2 -
AC16 4 5 119 78 0.157 0.181 7.75365184115× 10−2 -
AC17 5 5 222 150 0.201 0.219 3.35508111043× 10−6 +4.5× 10−10

REA1 2 2 77 66 0.116 0.167 1.37498793652× 10−3 -
AC1 4 5 325 230 0.267 0.253 7.99003318082× 100 -
AC2 3 4 61 57 0.111 0.171 3.36705685350× 100 -
AC3 4 4 427 297 0.305 0.329 7.43718998002× 10−2 -
AC6 5 9.5 253 366 0.215 0.356 2.32030683553× 10−8 +2.6× 10−1

AC11 5 3 198 113 0.213 0.167 5.21908412146× 10−8 −2.5× 10−8

ROC3 4 5 204 187 0.209 0.264 5.30806020326× 10−2 -
ROC5 6 5 280 176 0.246 0.306 2.85628817204× 10−4 −1.7× 10−10

ROC6 5 7 324 111 0.269 0.239 5.81391974240× 10−2 +1.8× 10−1

ROC7 4 4 68 55 0.115 0.161 9.01354011348× 10−1 -
ROC8 3 6 134 119 0.163 0.217 2.08192687301× 10−5 +1.6× 10−10

ROC9 3 4 137 101 0.160 0.177 4.07812890254× 10−2 -
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Table 3
For a description of the columns, see the caption of Table 1.

Large sparse problems: Continuous-time (top); discrete-time (bottom)

Iters # Eig Time (secs) RSR approximation

Problem v1 v2 v1 v2 v1 v2 min{εv1, εv2} (εv1 − εv2)/εv1

NN18 1 2 27 37 1.833 2.430 9.77424680376× 10−1 -
dwave 2 4 72 59 32.484 28.794 2.63019715625× 10−5 -
markov 2 3 61 56 12.581 10.479 1.61146532880× 10−4 -
pde 4 5 128 79 4.670 3.011 2.71186478815× 10−3 -
rdbrusselator 2 3 50 45 4.517 4.402 5.47132014748× 10−4 -
skewlap3d 2 2 103 78 115.004 90.605 4.59992022215× 10−3 -
sparserandom 2 2 90 74 3.056 2.655 7.04698184529× 10−6 −3.5× 10−10

dwave 2 4 34 33 14.776 14.397 2.56235064981× 10−5 -
markov 3 3 73 64 15.740 14.056 2.43146945130× 10−4 -
pde 2 2 46 35 1.713 1.450 2.77295935785× 10−4 -
rdbrusselator 3 5 76 60 5.926 5.041 2.56948942080× 10−4 -
skewlap3d 2 3 50 52 53.297 50.526 3.40623440406× 10−5 -
sparserandom 2 2 21 19 1.035 0.880 2.53298721605× 10−7 −3.5× 10−8

tolosa 3 3 98 53 10.097 6.251 2.14966549184× 10−7 −6.5× 10−12

sion termination feature was usually the dominant factor in reducing the number of
eigensolves. However, extrapolation was crucial for the large gains observed on HE6
(continuous-time) and ROC6 (discrete-time). By comparison, in [MO16], when using
HEC to approximate the complex stability radius, extrapolation tended to be much
more frequently beneficial while usually providing greater gains as well. Part of this
disparity may be because of the greatly increased number of eigensolves we observed
when running getStabRadBound to approximate the complex stability radius as op-
posed to the real stability radius; on the 34 small-scale problems, the complex stability
radius variant incurred 1226 more eigensolves per problem on average, with the me-
dian being 233 more. In our real stability radius experiments, HE6 notwithstanding,
Algorithm SVSA-RF simply did not seem to incur slow convergence as often nor to the
same severity as its rank-one counterpart for complex spectral value sets, and hence,
there was less need for extrapolation. We note that our ODE-based approach for
updating real rank-two Frobenius-norm bounded perturbations underlying Algorithm
SVSA-RF also provides a new expansion iteration for complex spectral value sets;
we evaluate the performance of this new variant when approximating the complex
stability radius in section 1 of the supplementary material.

7.4. Finding an initial upper bound can be challenging. We noticed that
the fast upper bound procedure had some difficulty before it was able to find a desta-
bilizing perturbation for problem CM4 (continuous-time). Generally, we have found
that the upper bound procedure can find a destabilizing perturbation within a hand-
ful of iterations, but on CM4, it took 23 iterations. In Figure 3, we show plots of
σ

R,‖·‖F
ε (A,B,C,D) for the largest value of ε obtained in the upper bound procedure,

along with selected iterates of the routine corresponding to that value of ε. As is
apparent from the plots, part of the difficulty in finding an upper bound is due to the
highly nonconvex “horseshoe” shapes that create locally rightmost points in the left
half-plane for values of ε near its upper bound ‖D‖−1. The expansion routine had
converged to such a point and then iteratively increased ε to be near its upper bound
in vain. However, and surprisingly, on the 23rd iteration of the upper bound proce-
dure, the expansion phase was actually able to jump out of this region and land in the
right half-plane to find a destabilizing perturbation and thus an upper bound. Even
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Fig. 3. Test problem CM4. Successively wider views (left-right, top-to-bottom) of
σ

R,‖·‖F
ε (A,B,C,D) (realized by the blue dot samples and generated in a manner similar to that

described in Figure 1 and section 7.2) showing selected iterates of the upper bound procedure (yellow
x’s connected by line segments) with ε near its limit of ‖D‖−1

2 . The black +’s are eigenvalues of
A while the black dashed line is the imaginary axis. Top left: The expansion phase of the upper
bound procedure has nearly converged to a locally rightmost point that is just to the right of an
eigenvalue of A, but this region of σR,‖·‖F

ε (A,B,C,D) is always contained in the left half-plane due
to the limit ε < ‖D‖−1

2 . Top right: This highly nonconvex “horseshoe” structure is repeated in
multiple places; on the next expansion step, the routine was able to “jump” to a different region
of σR,‖·‖F

ε (A,B,C,D) that is in the right half-plane. Bottom left: On the next step after that, the
expansion phase again jumps out of one region and into another, this time significantly farther to
the right; though technically an upper bound had already been found, the routine continued to iterate
to better locate where a minimal destabilizing perturbation may lie. Bottom right: Zooming out
further, we see that σR,‖·‖F

ε (A,B,C,D) is much larger than was initially apparent.

though the routine had essentially already converged to a perturbation correspond-
ing to this locally rightmost point in the left half-plane, the routine still produced
another update step to try, but this update step was nearly identical to the current
perturbation, because further rightward continuous progress was not possible. The
full update step failed to satisfy monotonicity, so the line search was invoked with
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an initial interpolation of t = 0.5, and as a result, the unnormalized interpolation
of the current perturbation and the full update step perturbation nearly annihilated
each other. When that interpolation was renormalized back to have unit Frobenius
norm, as is necessary, the resulting perturbation was very different from the current
perturbation (as well as the full update step), which thus allowed the algorithm to
jump to an entirely different disconnected region of the spectral value set. We note
that Algorithm SVSA-RF can also “jump” when a new perturbation just happens to
result in a second eigenvalue of A being taken farther to the right than the eigenvalue
it had intended to push rightward. In practice, if the fast upper bound procedure
fails, it can always be restarted from a randomly generated perturbation.

8. Conclusion. We have presented an algorithm that, to the best of our knowl-
edge, is the first method available to approximate the real stability radius of a linear
dynamical system with inputs and outputs defined using Frobenius-norm bounded
perturbations. It is efficient even in the large-scale case, and since it generates desta-
bilizing perturbations explicitly, it produces guaranteed upper bounds on the real
stability radius. The hybrid expansion-contraction method works by alternating be-
tween (a) iterating over a sequence of destabilizing perturbations of fixed norm ε to
push an eigenvalue of the corresponding perturbed system matrix as far to the right
in the complex plane as possible and (b) contracting ε to bring the rightmost eigen-
value back to the imaginary axis. The final computed eigenvalue is very close to the
imaginary axis and is typically at least a locally rightmost point of the corresponding
ε-spectral value set. The method is supported by our theoretical results for the under-
lying ODE that motivates the method, and our computational results are validated
by extensive random sampling techniques. The method has been implemented in our
open-source MATLAB code getStabRadBound.

Appendix A. Notes on implementing HEC. We use SVSA and HEC here
to refer to both the original SVSA [GGO13] and HEC [MO16] algorithms, as well
as their respective real Frobenius-norm variants, SVSA-RF and HEC-RF, since the
issues outlined in this section apply to all equally. As mentioned in section 7.1.1,
the original convergence criteria for both can sometimes be inadequate. We begin by
discussing the limitations of SVSA’s original convergence criteria.

In [GGO13, sec. 5], it was proposed that the expansion phase (SVSA) should be
halted once

(53) Reλk+1 − Reλk < τuv ·max(1,Reλk)

is satisfied.3 However, this condition can cause the expansion to halt prematurely,
which in turn can cause HEC to return an unnecessarily higher value of ε, that is, a
worse approximation. Part of this is due to the fact that when the expansion iter-
ates have real part less than one, the condition only measures an absolute difference
between consecutive steps, which is often a rather poor optimality measure. Further-
more, by only measuring the difference between the real parts, (53) fails to capture
any change in the imaginary parts, which if present, would strongly indicate that a
locally rightmost point has not yet been reached. For example, an oscillation in the
imaginary part (modulo complex conjugacy) is often a sign that a locally rightmost
point has not been attained, even when the change in the real part is small, and this
is not an exceptional occurrence. These shortcomings have motivated our new SVSA

3Compared to [GGO13], we have dropped the absolute value signs here, since in the context of
HEC, all points lie in the right half-plane.
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Table 4
For both phases, return code 1 is used to indicate that the respective desired convergence has

been achieved, while return code 2 indicates that the early termination features were invoked. For
the contraction phase, return code 3 indicates that the precision limits of the hardware preclude
satisfying the convergence criteria; i.e., it is a hard failure. For the expansion phase, return code
3 can be interpreted as a sign of convergence, as further rightward progress is apparently no longer
possible.

Simplified list of expansion/contraction termination possibilities

Contraction phase:
0: maxit reached though some contraction achieved
1: point with real part in [0, τε) attained
2: significant contraction achieved in right half-plane, halted early
3: desired point is bracketed by two consecutive floating point numbers (no

convergence criteria satisfied)

Expansion phase:
0: maxit reached
1: relative difference, in C, between λk+1 and λk is less than τuv

2: step length |λk+1 − λk| has significantly shortened, halted early
3: line search failed to produce a monotonic step

convergence criteria using a relative difference of distance in the complex plane, as
described in section 7.1.1.

Previously, in [MO16, sec. 7.1], HEC was said to have converged if either (a) the
expansion phase returned a point λ such that Reλ < τε + τuv or (b) the expansion
and contraction phases failed consecutively, in either order. However, we have found
that this too can be inadequate, even with our improvements to convergence criteria
for SVSA and our new condition that says that HEC has converged if it has found a
locally rightmost point λ such that Reλ ∈ [0, 2τε]. The main issue is that, in practice,
both the contraction and expansion phases may terminate in a multitude of ways
without satisfying either of their respective convergence criteria. They may terminate
early, using their respective early termination conditions described in section 7.1.1 to
help accelerate HEC, or they may hit their maximum numbered of allowed iterations.
They may also simply fail to make further progress, for a variety of reasons. In
Table 4, we give a simplified list of these termination possibilities. We now describe
how to interpret the combination of these possibilities that can occur and how their
consequences should be handled, and we present concise pseudocode for the resulting
practical implementation of HEC.

Although initially counterintuitive, we have redesigned the contraction procedure
so that reaching its maximum allowed iteration count will only cause it to actually halt
iterating if it has also achieved some amount of contraction, that is, it has encountered
at least one point λ̃ such that 0 ≤ Re λ̃ ≤ Reλ, where λ is the initial point. This
seemingly unconventional behavior has the two benefits that (a) the only case when it
does not make any progress is when it is impossible to do so (i.e., when it exhausts the
machine’s precision) and (b) a sufficiently large maximum iteration limit to find a first
contraction step no longer needs to be known a priori, which is generally not possible.
If the contraction routine has made progress (no matter the termination condition),
then additional expansion is always potentially possible, and so the next expansion
phase must be attempted. Furthermore, even if the contraction phase failed to make
any progress, but the previous expansion did not converge, then the next expansion
phase should attempt to resume it since further expansion is apparently possible and
may enable the subsequent contraction phase to finally make progress. The only case
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Pertinent pseudocode for a practical HEC implementation

Input: ε0 > 0, rightmost λ0 ∈ σ(M(ε0UV
∗)) such that Reλ0 > 0 with ‖UV ∗‖ = 1

for the chosen norm and U ∈ Cp, V ∈ Cm or U ∈ Rp×2, V ∈ Rm×2 for respectively
approximating the complex or real stability radius, initial contraction bracket
given by εLB := 0 and εUB := ε0, boolean variable expand converged := false,
. . .

Output: final value of sequence {εk}

1: for k = 0, 1, 2, . . . do
2: [εc, λc, εLB, εUB, ret con] = contract(εLB, εUB, λk, . . .) // where:
3: // εc is the possibly contracted value of ε such that 0 < εc ≤ ε
4: // λc is the possibly contracted eigenvalue such that 0 ≤ Reλc ≤ Reλk
5: // εLB and εUB are possibly updated, to the tightest bracket encountered
6: // ret con is the contraction’s return code from Table 4
7: // Check if no contraction was possible (precision of hardware exhausted)
8: if ret con == 3 and expand converged then
9: if Reλc ≤ 2 · τε then

10: return // HEC converged to tolerance
11: else
12: return // HEC stagnated
13: end if
14: end if
15: εk+1 := εc
16: [λk+1, ret exp] = expand(εk+1, λc, . . .) // where:
17: // Reλk+1 ≥ Reλc
18: // ret exp is the expansion’s return code from Table 4
19: expand converged := (ret exp == 1 or ret exp == 3)
20: if expand converged and Reλk+1 ≤ 2 · τε then
21: return // HEC converged to tolerance
22: else if Reλk+1 − Reλc > 0 then
23: εLB := 0, εUB := εk+1 // Expansion made some progress; do new contraction
24: else if ret con == 3 then
25: return // HEC stagnated
26: end if // Else contraction will be resumed/restarted from where it last left off
27: end for

remaining is when the contraction phase failed to make any progress (by reaching
the limits of the hardware) after having had the preceding expansion phase converge
(meaning it would not be able to make further progress if it were to be rerun with
the same value of ε). In this situation, HEC can no longer make any progress and
must quit. However, even though the contraction phase failed to meet its convergence
criteria, Reλc ∈ [0, 2τε] may still hold, so HEC may sometimes terminate successfully
in this case. If not, HEC has stagnated, which is likely an indication that tolerances
are too tight for the problem in question (or possibly that a subroutine has failed in
practice).

For each expansion phase, we consider it to have converged once it can no longer
make any meaningful rightward progress. Our new stopping criteria described in
section 7.1.1 attempt to capture precisely that, and do so more accurately than the
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previous scheme. Furthermore, if the line search fails to produce a monotonic step,
then the expansion routine is, by default, unable to make further progress. We have
observed that the line search failing is generally a good sign, often implying that a
stationary point has already been found. We thus consider the expansion phase to
have converged if either our new stopping condition is met or the line search fails.
Otherwise, further expansion is potentially possible. After an expansion phase, HEC
should first check if the expansion phase converged and whether Reλ ∈ [0, 2τε] holds,
as the two conditions together indicate that HEC has converged and can halt with
success. However, if the expansion phase has made progress, then, since it has not
converged, HEC should continue by starting a new contraction phase. Otherwise, we
know that the expansion phase has not made any progress and is thus considered
converged. If the previous contraction phase exhausted the precision of the machine,
then the HEC iteration can no longer continue, and it has stagnated before meeting
its convergence criteria for tolerances that are likely too tight. The only remaining
possibility is that the contraction phase achieved some amount of contraction but did
not yet converge. In this last case, the contraction phase should be restarted from
its most recent bracket to see if it can make further progress, which might enable a
subsequent expansion to succeed.

The above design also causes the respective maximum iteration limits of the ex-
pansion and contraction phases to act as additional early termination features within
the HEC iteration, without ever compromising the final numerical accuracy.
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