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Abstract

The variational approach for electronic structure based on the two-body reduced density

matrix is studied, incorporating two representability conditions beyond the previously used

P , Q and G conditions. The additional conditions (called T1 and T2 here) are implicit in

work of R. M. Erdahl [Int. J. Quantum Chem. 13, 697–718 (1978)] and extend the well-

known three-index diagonal conditions also known as the Weinhold-Wilson inequalities. The

resulting optimization problem is a semidefinite program, a convex optimization problem for

which computational methods have greatly advanced during the past decade. Formulating

the reduced density matrix computation using the standard dual formulation of semidefinite

programming, as opposed to the primal one, results in substantial computational savings

and makes it possible to study larger systems than was done previously. Calculations of the

ground state energy and the dipole moment are reported for 47 different systems, in each case

using an STO-6G basis set and comparing with Hartree-Fock, SDCI, BD(T), CCSD(T) and

full CI calculations. It is found that the use of the T1 and T2 conditions gives a significant

improvement over just the P , Q and G conditions, and provides in all cases that we have

studied more accurate results than the other mentioned approximations.
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1 Introduction

The ground state properties of a fermion system in a given external potential serve as input for

the analysis of a boundless variety of physical situations, and reliable solution of the associated

N -body Schrödinger equation has remained a focus of activity for many decades. It was noticed

by J. E. Mayer back in 1955 [1] that for non-relativistic electrons, which interact via pair

forces alone, the system energy depends only upon the two-body reduced density matrix (2-

RDM), possessing merely four-particle degrees of freedom. In fact, only two combinations –

the pair density and one-body reduced density matrix (1-RDM) – each possessing just two-

particle degrees of freedom, are required. This suggested to Mayer that the ground state energy

– and density matrix information – could be economically computed by simply carrying out

a Rayleigh-Ritz minimization with respect to the pair density and 1-RDM; subject, of course,

to a few obvious conditions they must satisfy. But carrying out the process correctly gave

horrible results, and a number of researchers found that the reason was that an enormous

number of necessary restrictions – mainly inequalities – were being ignored. Progress with this

very promising approach – referred to as the RDM method – could therefore only be made by

systematizing the listing of these restrictions, determining large classes in explicit form, and then

including them in the minimization process. We would like here to report significant success in

this endeavor, the result of drawing together advances that have been made in computational

as well as analytic techniques over the half-century time span.

Although the 1-RDM and pair density are sufficient to carry out the program outlined above,

the advantage that they have of requiring only a small amount of information carries with it

the disadvantage that numerous structural relationships which serve as signatures of fermion

systems are not available for control purposes. Therefore, almost all of this work has been

carried out in the context of the 2-RDM (from which the 1-RDM can be derived). The problem

then is to assure in so far as possible that these objects come from some N -fermion system.

This concept, referred to as N -representability, was first stated clearly by A. J. Coleman [2] and
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the most important representability conditions (the P , Q and G conditions) were formulated

by Coleman [2] and by C. Garrod and J. K. Percus [3]. References to earlier work involving

reduced density matrices (RDM’s) may be found in those papers and also in a survey article

by Coleman [4]. Subsequent important analytical work on the representability problem was

done by W. B. McRae and E. R. Davidson [5], who studied the diagonal problem, and by

R. M. Erdahl [6, 7], and J. K. Percus [8]. Because the known explicit conditions are necessary

but not sufficient for representability the RDM method involves variation over an enlarged

domain, and yields a lower bound for the energy of the system in the model space.

The first empirical studies of the RDM method in atomic and molecular physics were done

in the 1970’s on atomic Beryllium (N = 4) by C. Garrod and M. A. Fusco [9]. These authors

imposed the P , Q and G conditions. The numerical methods that were employed include a

penalty function approach and also a cutting plane algorithm [10]. This work pointed to the

possible high accuracy of the RDM method, but also showed practical computational difficulties

in solving the variational problem.

The RDM method using the P , Q and G conditions has the mathematical form of a semidef-

inite program (SDP): maximize a linear function on the intersection of a linear affine space

and the convex cone of block-diagonal positive semidefinite matrices. The field of semidefinite

programming has seen tremendous interest in recent years with the advent of interior-point

methods [11, 12, 13], and this has rekindled interest in the RDM method for electronic structure

as well. Some preliminary investigation along this line were made by M. Nayakkankuppam [14].

Recently H. Nakatsuji et al. reinvigorated the RDM method in a study in which they used the

P , Q and G conditions for a number of small atoms and molecules [15] and showed that the

results were significantly more accurate than those obtained by the Hartree-Fock approxima-

tion. In follow-on work Nakatsuji et al. also considered the three-index diagonal conditions [5]

(also known as the Weinhold-Wilson inequalities [16]), testing to see if they were violated in the

solutions found using only the P , Q and G conditions [17].

The present work continues this line of research that is based on the 1960’s ideas of Coleman
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and of Garrod and Percus. We use semidefinite programming to solve the variational problem

for the 2-RDM subject to certain representability conditions to obtain a lower bound (in the

model space) for the ground state energy of the system. However, in addition to the P , Q and G

conditions we impose a pair of positive semidefinite conditions that has a three-index form; we

call them the T1 and T2 conditions. These conditions extend the three-index diagonal conditions

to non-diagonal form. The T1 and T2 conditions are implicit in the work of Erdahl [6], but

they are not spelled out in that paper and have received little notice. We find that including

the T1 and T2 conditions results in a spectacular increase in the accuracy of the results, and

gives in the cases studied an accuracy better than that of other more familiar approximate

methods: singly and doubly substituted configuration interaction (SDCI), Brueckner doubles

(with triples) (BD(T)) and coupled cluster singles and doubles with perturbational treatment

of triples (CCSD(T)).

A second advance in the present work is related to the formulation of the SDP. We use a

general purpose semidefinite programming code, SDPARA by M. Yamashita et al. [18], which is

a parallel code based on the SDPA code of K. Fujisawa et al. [19]. In order to use a code such as

SDPARA we must formulate our optimization problem using either the standard primal or the

standard dual formulation of SDP (see Section 3 for definitions of these). The computational cost

of solving the SDP scales at least as m3, where m is the number of linear equality constraints

in the primal form or, equivalently, the number of dual variables in the dual form. One of

the obstacles to the use of the RDM method is that m increases rapidly with the basis size

r. However, we find that formulating the RDM optimization problem using the dual form of

SDP results in a much smaller m than formulating the same problem in the primal form used

in previous work [15, 17]. If we use only the P , Q and G conditions then m scales as r4 in

both cases, but with a smaller constant in the dual formulation; when we add the T1 and T2

conditions, then m scales as r6 using the primal formulation but continues to scale as r4 using

the dual formulation.

Without attempting any quantitative comparison we wish to note here some approaches that
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involve RDM’s in different ways than the variational approach following Coleman and Garrod

and Percus. One line of work extends density function theory by taking as unknown the 1-RDM.

For the 1-RDM the representability conditions are completely known [2], but of course the energy

function must be approximated; see for example [20, 21, 22, 23]. Another line of work, going

back to H. Nakatsuji and K. Yasuda [24, 25] and to C. Valdemoro and F. Colmenero [26, 27],

is based on the contracted Schrödinger equation (density equation) and employs approximate

closure relations for the p-RDM (p = 3, 4, 5) in terms of the 1-RDM and 2-RDM. For this

approach see also recent work by D. Mazziotti, e.g., [28, 29].

The remaining sections of the paper are organized as follows. In Section 2 we review the

RDM method and the P , Q and G conditions, and we derive the T1 and T2 conditions. In

Section 3 we review semidefinite programming with attention to the primal and dual formula-

tions. In Section 4 we describe our SDP implementation of the RDM method and we review

the computational cost, comparing the primal and dual formulations. In Section 5 we present

the results of the calculations and demonstrate the efficiency of the T1 and T2 conditions. We

conclude with some remarks on planned future work.
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2 The RDM Method

2.1 Reduced Density Matrices

As is customary we consider the N -fermion problem on a discrete orthonormal basis of single

particle wavefunctions. Let Ψ be the ground state wavefunction for an N -fermion system (nor-

malized as 〈Ψ|Ψ〉=1). Then the 1-RDM and 2-RDM (denoted as γ and Γ, respectively) may be

defined as

γ(i, i′) =
〈
Ψ|a+

i′ ai|Ψ
〉

, (1)

Γ(i, j; i′, j′) =
〈
Ψ|a+

i′ a
+
j′ajai|Ψ

〉
, (2)

where ai and a+
i are the annihilation and creation operators on the single particle state i for

the chosen basis set. Γ(i, j; i′, j′) is antisymmetric under interchange of i and j and also under

interchange of i′ and j′, and γ and Γ are hermitian. These are immediate consequences of the

definitions of γ and Γ.

If the Hamiltonian of N -fermion system involves one-body and two-body interactions only,

i.e.,

H =
∑
i,i′

h1(i, i′)a+
i ai′ +

1
2

∑
i,j;i′,j′

h2(i, j; i′, j′)a+
i a+

j aj′ai′ ,

then the ground state energy E can be expressed exactly in terms of the 1-RDM and 2-RDM:

E = Tr(h1γ) +
1
2

Tr(h2Γ) , (3)

where Tr denotes trace, Tr(h1γ) =
∑

i,i′ h1(i, i′)γ(i′, i), Tr(h2Γ) =
∑

i,j;i′,j′ h2(i, j; i′, j′)Γ(i′, j′; i, j).

The RDM method uses as trial function the pair (γ, Γ) in the space of functions satisfying

the stated antisymmetry and hermiticity conditions, and seeks to minimize the right hand side

of (3). Additional linear equality and convex inequality conditions are imposed on (γ, Γ) that

are necessary to ensure that the trial pair lies in the convex hull of density matrices that are

actually derivable from N -fermion wavefunctions; these are called N -representability conditions.
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2.2 Well-known N-representability Conditions

For an N -fermion system it is immediate from the definitions that the 1-RDM and 2-RDM

satisfy the linear equalities

∑
k

Γ(i, k; i′, k) = (N − 1)γ(i, i′) for all i, i′ (4)

and trace conditions ∑
i

γ(i, i) = N , (5)

and (not independent of the previous conditions)

∑
i,j

Γ(i, j; i, j) = N(N − 1) . (6)

Further representability conditions on (γ, Γ) are in the form of convex inequalities that do

not explicitly involve the particle number N .

For the 1-RDM γ alone, a complete set of representability conditions was given by Cole-

man [2]:

γ � 0, I − γ � 0 , (7)

where I denotes the identity matrix, and γ � 0 denotes that the matrix γ is positive semidefinite.

That is, all its eigenvalues are nonnegative.

For the pair (γ, Γ) Coleman also gave what became known as the P and the Q conditions;

these two and the related G condition, which was given by Garrod and Percus [3], are the

starting point for all implementations of the RDM method.

The P condition states that Γ � 0, which is immediate from the definition of Γ. Here Γ is

interpreted as a hermitian operator on the space of antisymmetric two-body wavefunctions. That

an operator Γ on the space of antisymmetric two-body wave functions is positive semidefinite

(� 0) means that for any antisymmetric function g(i, j),

∑
i,j;i′,j′

g∗(i, j)Γ(i, j; i′, j′)g(i′, j′) ≥ 0 . (8)

8



The Q condition follows from the positive semidefinite property of the operator A+A where

A =
∑

i,j g(i, j)a+
i a+

j , and g is an arbitrary antisymmetric function of the two indices. Obviously,

〈Ψ|A+A|Ψ〉 ≥ 0, i.e., ∑
i,j;i′,j′

g∗(i, j)
〈
Ψ|ajaia

+
i′ a

+
j′ |Ψ

〉
g(i′, j′) ≥ 0 . (9)

This implies that Q � 0 (see (8)), where the hermitian matrix Q is defined by

Q(i, j; i′, j′) =
〈
Ψ|ajaia

+
i′ a

+
j′ |Ψ

〉
. (10)

It can be expressed in terms of the 1-RDM and 2-RDM by using the fermion commutator relation

aia
+
i′ = δ(i, i′)− a+

i′ ai,

Q(i, j; i′, j′) = Γ(i, j; i′, j′)− δ(i, i′)γ(j, j′)− δ(j, j′)γ(i, i′)

+ δ(i, j′)γ(j, i′) + δ(j, i′)γ(i, j′) + δ(i, i′)δ(j, j′)− δ(i, j′)δ(j, i′) . (11)

The G condition follows from the positive semidefinite property of the operator A+A where

A =
∑

i,j g(i, j)a+
i aj , and g is any function of the two indices. Again, 〈Ψ|A+A|Ψ〉 ≥ 0 implies

that G � 0, where the hermitian matrix G is defined by

G(i, j; i′, j′) =
〈
Ψ|a+

j aia
+
i′ aj′ |Ψ

〉
. (12)

It depends linearly on the 1-RDM and 2-RDM as

G(i, j; i′, j′) = Γ(i, j′; j, i′) + δ(i, i′)γ(j′, j) . (13)

For G there is no antisymmetry under the interchange of (i, j) or (i′, j′). As already done by

Rosina and Garrod [10] and other authors we write the G condition in the form of a positive

semidefinite inequality, with the matrix G depending linearly on γ and Γ. In the original work

of Garrod and Percus [3] the matrix G depended quadratically on γ. However, for a system with

fixed particle number the two formulations are fully equivalent.

2.3 Erdahl’s T -conditions

In the present work we include two additional representability conditions, which we call the T1

and T2 conditions. The conditions follow from the discussion in Section 8 of R. M. Erdahl’s
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1978 survey paper on representability [6], but they appear to have been little noticed and as far

as we know they have not been employed in other explorations of the RDM method.

To obtain the T1 condition we observe that for an arbitrary totally antisymmetric function

g(i, j, k) the operators A+A and AA+ are both positive semidefinite, where A =
∑

i,j,k g(i, j, k)aiajak.

One can express this in terms of the RDM’s just as in the derivation of the Q or the G

conditions. Separately 〈Ψ|A+A|Ψ〉 and 〈Ψ|AA+|Ψ〉 each involves the 3-RDM (defined as <

Ψ|a+
i′ a

+
j′a

+
k′akajai|Ψ >), but with opposite sign, so that in the sum 〈Ψ|A+A + AA+|Ψ〉 only the

1-RDM and 2-RDM are present. Of course this sum is nonnegative as well. The result is that

T1 � 0, where the hermitian matrix T1 is defined by

T1(i, j, k; i′, j′, k′) =
〈
Ψ|a+

k a+
j a+

i ai′aj′ak′ + ai′aj′ak′a
+
k a+

j a+
i |Ψ

〉
. (14)

It is related to the 1-RDM and 2-RDM by

T1(i, j, k; i′, j′, k′) = A[i, j, k]A[i′, j′, k′]
(

1
6
δ(i, i′)δ(j, j′)δ(k, k′)

−1
2
δ(i, i′)δ(j, j′)γ(k, k′) +

1
4
δ(i, i′)Γ(j, k; j′, k′)

)
. (15)

We are using the notation A[i, j, k]f(i, j, k) to mean an alternator with respect to i, j and k:

f(i, j, k) summed over all permutations of the arguments i, j and k, with each term multiplied

by the sign of the permutation.

The T2 condition follows in a similar way from the positive semidefinite property of the

operator A+A+AA+ when A =
∑

i,j,k g(i, j, k)a+
i ajak. In this case, g(i, j, k) should be assumed

antisymmetric with respect to (j, k) only. The result is that T2 � 0, where the hermitian matrix

T2 is defined by

T2(i, j, k; i′, j′, k′) =
〈
Ψ|a+

k a+
j aia

+
i′ aj′ak′ + a+

i′ aj′ak′a
+
k a+

j ai|Ψ
〉

. (16)

It is related to the 1-RDM and 2-RDM by

T2(i, j, k; i′, j′, k′) = A[j, k]A[j′, k′]
(

1
2
δ(j, j′)δ(k, k′)γ(i, i′)

+
1
4
δ(i, i′)Γ(j′, k′; j, k)− δ(j, j′)Γ(i, k′; i′, k)

)
. (17)
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2.4 Detailed Summary of N-representability Conditions

In this work, we implemented the RDM method for an N -electron system. In this context, Ψ

is the ground state wavefunction of an N -electron system, the index i denotes the spin orbitals

(single particle basis). Let r denote the basis size, then i = 1, 2, · · · , r. The index i may be

refined by a pair of indices ni (spatial orbitals) and σi (spin states) when the need for explicitly

separating the spatial and spin parts occurs. σi can take the values α (spin up (↑)) and β (spin

down (↓)). The number of spatial orbitals is the half of the basis size r, therefore, ni may take

any of the values 1, 2, · · · , r/2.

With this notation, we now summarize the N -representability conditions included in our

calculation.

1. Hermiticity of the matrices γ, Γ, Q, G, T1 and T2.

2. Antisymmetric conditions

Γ(i, j; i′, j′) = −Γ(j, i; i′, j′) = −Γ(i, j; j′, i′) . (18)

Also, the auxiliary matrices Q and T1 are antisymmetric with respect to all pair and triple

indices, respectively, and the matrix T2 is antisymmetric with respect to the last 2 indices of

each triple (refer to (16)).

3. Positive semidefinite (� 0) constraints on matrices γ, I − γ, Γ, Q, G, T1 and T2.

For the linear relations of matrices Q, G, T1 and T2 to γ and Γ, refer to (11), (13), (15) and

(17), respectively.

4. Linear equality constraints involving the electron number N , (4) to (6).

5. Linear equality constraints involving α electron number Nα

∑
ni

γ(niα, niα) = Nα , (19)∑
ni,nj

Γ(niα, njα;niα, njα) = Nα(Nα − 1) . (20)
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6. A linear equality constraint involving total spin S

∑
ni,nj

(Γ(niα, njα;niα, njα) + Γ(niβ, njβ;niβ, njβ))

−2
∑
ni,nj

Γ(niα, njβ;niα, njβ)− 4
∑
ni,nj

Γ(niα, njβ;njα, niβ) + 3N = 4S(S + 1) . (21)

7. Spin symmetries of matrices γ, Γ and Q, G, T1 and T2

γ(niσi, ni′σi′) = 0 when σi 6= σi′ , (22)

Γ(niσi, njσj ;ni′σi′ , nj′σj′) = 0 when σi + σj 6= σi′ + σj′ , (23)

Q(niσi, njσj ;ni′σi′ , nj′σj′) = 0 when σi + σj 6= σi′ + σj′ , (24)

G(niσi, njσj ;ni′σi′ , nj′σj′) = 0 when σi + σj′ 6= σj + σi′ , (25)

T1(niσi, njσj , nkσk;ni′σi′ , nj′σj′ , nk′σk′) = 0 when σi + σj + σk 6= σi′ + σj′ + σk′ , (26)

T2(niσi, njσj , nkσk;ni′σi′ , nj′σj′ , nk′σk′) = 0 when σi + σj′ + σk′ 6= σj + σk + σi′ . (27)

Here constraints (19) to (20) and (21) may be derived from the fact that Ψ is the eigenstate of

N̂α (number operator for α electrons) and Ŝ2 (spin-squared) [15], respectively. Constraints (22)

through (27) immediately follows from definitions of matrices (refer to (1), (2), (10), (12), (14)

and (16)), combining with the fact that Ψ is the eigenstate of N̂α.

We make a few more remarks. First, although in general the Hamiltonian and the RDM’s

are complex hermitian, for the N -electron system (no magnetic field and no relativistic terms),

the Hamiltonian and the RDM’s are real under the chosen basis, as are Q, G, T1 and T2.

Second, the objects Γ, Q, G, T1 and T2 are presented initially as four-index and six-index

objects; however, after mapping two indices i, j and three indices i, j, k to a composite index,

they are r2 × r2 and r3 × r3 matrices correspondingly. Due to the antisymmetric properties,

all except G can be represented by “compacted” matrices with reduced dimensions by dropping

those dependent entries in the matrices (the matrix G is still r2×r2). The “compacted” matrices

(denoted by adding a ˜ to the corresponding symbol) can be formed by those entries with indices

i < j, i′ < j′ in Γ, Q; i < j < k, i′ < j′ < k′ in T1; j < k, j′ < k′ in T2, respectively (refer

to (2), (10), (14), (16)). So, Γ̃, Q̃ ∈ Sr2, T̃1 ∈ Sr3 and T̃2 ∈ S(r×r2), where Sn denotes the
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space of n× n real symmetric matrices, r2 = C2
r , and r3 = C3

r (Cn
r is the binomial coefficient).

Thus, the formulas appearing in this section must be changed if they are expressed in terms of

“compacted” matrices. For example, the ground state energy E (see (3)) can be expressed as

E = Tr(h1γ) + Tr(ȟ2Γ̃) , (28)

where ȟ2(i, j; i′, j′) = h2(i, j; i′, j′)− h2(i, j; j′, i′), and i < j, i′ < j′.

Third, the matrices γ, Γ̃, Q̃, G, T̃1 and T̃2 are all further partitioned to block diagonal ma-

trices according to the spin symmetry ((22) through (27)); here an appropriate ordering of spin

orbitals is involved. Specifically, γ has block sizes r/2, r/2; Γ̃, Q̃ have block sizes C2
r/2, C

2
r/2, r

2/4;

G has block sizes r2/2, r2/4, r2/4; T̃1 has block sizes C3
r/2, CT , CT , C3

r/2; and T̃2 has block sizes

CT + r3/8, CT + r3/8, CT , CT , where CT = C2
r/2 × r/2.
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3 Semidefinite Programming

Semidefinite programs (SDP’s) are a class of convex optimization problems that has been inten-

sively studied during the past decade. For good surveys on semidefinite programming and for

background on results reviewed here we refer to [11, 12, 13].

An SDP can be summarized as maximization of a linear function on the intersection of a

linear affine space and the convex cone of block-diagonal positive semidefinite matrices. Let

Rm denote m-dimensional real linear space and let B denote the space of block-diagonal real

symmetric matrices with prescribed block sizes. A data vector b ∈ Rm, and the data matrices

C ∈ B and Ap ∈ B (for p = 1, 2, . . . ,m) together define an SDP, which is expressed in primal

formulation as 
max
X∈B

Tr(CX)

subject to Tr(ApX) = bp, (for p = 1, 2, . . . ,m)

X � 0,

(29)

where X � 0 means that the block-diagonal matrix X ∈ B is positive semidefinite (equivalently,

each of its blocks is positive semidefinite). Analogously, we write X � 0 to mean that X is

positive definite. The dual formulation of the same SDP (29) is
min

y∈Rm, Z∈B
bty

subject to Z � 0, where Z =
m∑

p=1

Apyp − C .
(30)

Here the variables are the vector y ∈ Rm and the block-diagonal matrix Z ∈ B, and t denotes

transpose. We say that X is a primal feasible point (strictly feasible point) if it satisfies the

constraints in (29) (and X � 0). Likewise, we say that (y, Z) is a dual feasible point (strictly

feasible point) if it satisfies the constraints in (30) (and Z � 0).

Then if (X, y, Z) is a primal-dual feasible point, we have

bty − Tr(CX) = bty − Tr

(
m∑

p=1

Apyp − Z)X

 = Tr(XZ) ≥ 0 , (31)

which means that the optimal value of the primal linear function is no larger than the dual one.

Furthermore, it is known from duality theory that if both the primal formulation (29) and the
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dual formulation (30) have strictly feasible points, then both have optimal solutions and their

optimal values coincide with each other, so that the duality gap (the left hand side of (31)) is

zero. In the special case that all block sizes of matrices in B are one, all block-diagonal matrices

reduce to diagonal ones and consequently the SDP reduces to a standard linear program.

Several methods to solve SDP’s have been developed in the last decade, but among them,

the most established and efficient methods are the iterative methods called primal-dual interior-

point methods. Briefly, these methods are based on the key notion of primal-dual central path,

which is defined as the set of triples (Xµ, yµ, Zµ) satisfying XµZµ = µI for some µ > 0 in addition

to the constraints of (29) and (30). It is known that, under the strictly feasible point assumption

already mentioned, the triple (Xµ, yµ, Zµ) always exists and is unique for all real µ > 0, that

Xµ � 0 and Zµ � 0, that the path is a smooth function of µ, and that as µ ↘ 0, the triple

converges to an optimal primal-dual solution of the SDP. (Note that the equation XµZµ = µI

converges to the condition XZ = 0 as µ ↘ 0, which is equivalent to the zero duality gap

condition Tr(XZ) = 0). In a primal-dual interior-point method, a technique based on Newton’s

method is used to numerically trace the central path. At each iteration, it is necessary to solve a

linear system of equations with an m×m dense symmetric positive definite coefficient to obtain

a search direction that indicates the direction of the next point in the iteration. The step taken

along the search direction is chosen to ensure that the next primal and dual iterates X and Z

are strictly positive definite. Obtaining a primal-dual feasible starting point for the process is

nontrivial, so feasibility of the primal and dual equality constraints is generally obtained only in

the limit, but the X and Z iterates are strictly positive definite throughout the iteration (hence

the name “interior-point”), converging to the boundary of the semidefinite cone as the optimal

primal-dual solution is approached. The iteration is terminated when the duality gap Tr(XZ)

and primal and dual infeasibility are all reduced to sufficiently small quantities, certifying the

approximate optimality of the final iterates.
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4 SDP Implementation of the RDM Method

In order to use existing semidefinite programming software to solve our problem, we must convert

it into one of the standard SDP formulations. However, it is not immediately obvious how best to

convert an RDM variational problem to the primal formulation (29) or the dual formulation (30).

The primal formulation appears more direct and was used in the previous work [15, 17], but as

will be discussed here, use of the dual formulation brings important computational advantages.

In order to convert an RDM variational problem into the primal formulation, one begins by

writing the primal linear function as the negative energy of (28):

−E = max
γ, Γ̃

(
−Tr(h1γ)− Tr(ȟ2Γ̃)

)
. (32)

Then one casts the positive semidefinite N -representability conditions in the form X � 0 by

defining the primal block-diagonal matrix X ∈ B to have the following diagonal blocks: γ, I − γ,

Γ̃, Q̃, G, T̃1, and T̃2. The linear relations of I − γ, Q̃, G, T̃1 and T̃2 to γ and Γ̃ (see (11),

(13), (15), (17)), and the equality conditions (4) to (6) and (19) to (21) are all incorporated into

the linear constraints of (29) by suitable definitions of the matrices Ap ∈ B for p = 1, 2, . . . ,m;

these matrices are very sparse. The data matrix C ∈ B is defined from (32) accordingly. The

difficulty with this approach is that m, the number of primal constraints, is equal to the number

of independent elements of the block-diagonal matrices X ∈ B (i.e., I − γ, Q̃, G, T̃1, T̃2) plus

the number of equality conditions (4) to (6) and (19) to (21). This total scales as r6 due to the

T conditions.

A much more efficient approach is obtained by converting an RDM variational problem into

the dual formulation (30). Given U ∈ Sn, let us define svec : Sn → Rn(n+1)/2 as

svec(U) =
[
U11,

√
2U12, U22,

√
2U13,

√
2U23, U33, . . . ,

√
2U1n, . . . , Unn

]t
.

Define y ∈ Rm and b ∈ Rm in (30) as y = [svec(γ)t svec(Γ̃)t]t and b = [svec(h1)t svec(ȟ2)t]t.
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Then, the ground state energy (28) can be rewritten as the dual linear function

E = min
y

bty .

It now becomes relatively straightforward to express the N -representability conditions in the

dual form Z � 0 of (30) by defining the dual variable Z ∈ B to have the following diagonal

blocks: γ, I − γ, Γ̃, Q̃, G, T̃1 and T̃2, making suitable definitions of the matrices C ∈ B and

Ap ∈ B for p = 1, 2, . . . ,m which are all sparse. With this approach, we have that m, the

dimension of y, scales as r4.

One difficulty arises: how may we define the equality conditions ((4) to (6) and (19) to (21))

if the dual formulation (30) does not permit equality constraints? This is resolved by replacing

each equality by a pair of inequalities, which must be slightly relaxed to obtain a strictly feasible

region for the dual formulation (30). Thus, if ε is a suitably small number (in our computations

ε = 10−5), then an equation such as Tr γ − N = 0 can be replaced by ε ≥ Tr γ − N and

Tr γ − N ≥ −ε. This procedure introduces an extra diagonal block in the block-diagonal data

matrices C ∈ B and Ap ∈ B for p = 1, 2, . . . ,m. The presence of the additional diagonal blocks

does not significantly add to the computational cost.

A key point here is that the dual formulation that we are proposing is not the dual of

the natural primal formulation used in [15, 17], which has far larger m (order r6 compared to

r4). There is, of course, a primal interpretation for our dual formulation, but it is the dual

interpretation that arises naturally.

For an idea of the difference that the dual formulation makes, the largest SDP problem we

solved in Section 5 with basis size r = 20 has m = 7230, and the largest blocks in the data

matrices have size 1450× 1450. The additional diagonal blocks have order only 230. If we were

to attempt the primal formulation we would have m = 2561915, while the largest blocks in the

data matrices remain the same. The time required to solve the SDP problem by standard primal-

dual interior-point methods scales at least as m3. Using the dual formulation is advantageous

even when only the P , Q and G conditions are applied, and the advantage is overwhelming
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when the T1 and T2 conditions are added. The modest size of m leaves open the possibility of

incorporating more N -representability conditions in the future.
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5 Results and Discussion

Tables 1 and 2 show the ground state energies calculated by the RDM method for 47 molecules,

imposing the (P ,Q), (P ,Q,G), (P ,Q,G,T1), (P ,Q,G,T2) and (P ,Q,G,T1,T2) conditions (columns

6–10). These results are compared with results obtained by other more familiar methods with

use of the Gaussian 98 code [30]: singly and doubly substituted configuration interaction (SDCI),

Brueckner doubles (with triples) (BD(T)) and coupled cluster singles and doubles with perturba-

tional treatment of triples (CCSD(T)). The geometries used are the experimental ones from [31]

and the basis set is STO-6G for all systems. (CCSD(T) is arguably the most accurate single

method available in Gaussian 98 [32]). Table 1 listed only those molecules for which the full

CI result is available (last column), and the energies are given as a difference from that of the

full CI. We also compared with MP2 (2nd order Møller-Plesset method) from Gaussian 98, but

as the MP2 method almost always gives less accurate results than CCSD(T), BD(T) and SDCI

methods, its results are not displayed in the tables.

The RDM method provides a lower bound for the full CI result in the same model space, and

it gives exact solutions for the cases N = 2 and N = r − 2 using only the P and Q conditions

[3]. These predictions are confirmed in our calculations (see the “–” signs of columns 6–10

and see the results for molecules OH− and HF in Table 1 when only the P and Q conditions

are imposed). Previous numerical results of Nakata et al. [15, 17] suggest that adding the G

condition to the P and Q conditions is essential to obtain an solution that is competitive at

least with the Hartree-Fock approximation, and our present results confirm that conclusion for

a larger set of molecules. In certain cases (LiH, BeH, BH+, CH−, NH, NH−, OH+, OH, OH−,

HF+, HF, SiH−, HS+) the difference between the result of the RDM method using P , Q and

G conditions (simply the RDM (P ,Q,G) hereafter) and the full CI result is around 0.1 milli-

Hartree (mH) or less as seen in Table 1. In those cases the accuracy also compares favorably

with the CCSD(T), BD(T) and SDCI approximations. In the other cases in Table 1 the RDM

(P ,Q,G) errors are several mH: up to 16.7 mH for O+
2 . In those cases the RDM (P ,Q,G) errors
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are still well below the Hartree-Fock error in magnitude, but the other approximations are in

turn typically much better than the RDM (P ,Q,G) result.

The results of the RDM method are improved by inclusion of the T1 condition, and improved

spectacularly by adding both the T1 and T2 conditions (or even T2 alone). As mentioned in

previous sections, these are the three-index positive semidefinite conditions that extend the

Weinhold-Wilson diagonal conditions. We see that the RDM method with P , Q, G, T1 and T2

conditions gives almost the exact full CI values for the ground state energies, with error around

0.1 mH or less, for most of the cases in Table 1. The exceptions are NH3, H3O+, CF and O+
2 ,

and even in those cases the error is below 2.8 mH and compares favorably with the error that is

associated with the other methods.

One may be tempted to conclude from the tables that the T2 condition implies the T1

condition, but this is not true as can be seen by considering the diagonal case when the two

conditions each generate one of the Weinhold-Wilson inequalities. Indeed, an occasional case

like Li2 and B2 shows that the T1 condition has some strength independent of T2.

Table 3 shows the dipole moments in atomic unit (a.u.) calculated by the RDM method

for the same molecules using the various representability conditions (columns 6–10), and those

obtained by methods SDCI and Hartree-Fock (columns 11–12) from Gaussian 98. The molecules

in Table 3 are those of Tables 1 and 2 that have a non-zero dipole moment. The last column

shows the values obtained by full CI where we could do the calculation. (Dipole moments are

not available from CCSD(T) and BD(T) in Gaussian 98.) Like the results for the ground state

energy the results for the dipole moment are very encouraging. For the RDM (P ,Q,G) we obtain

an error of around 0.0001 a.u. or less (with respect to the full CI result) for LiH, BeH, BH+,

CH−, NH, NH−, OH+, OH, OH−, HF+, HF, SiH− and HS+; this is the same list of molecules

for which the RDM (P ,Q,G) gave a highly accurate ground state energy.

When the T1 and T2 conditions are added the dipole moment error falls to around 0.0001

a.u. or less for most of the remaining molecules in the list for which the full CI result is available;

the exceptions are CH2 (error 0.0003 a.u.), H2O+ (error 0.0002 a.u.), H3O+ (error 0.0002 a.u.),
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CF (error 0.0045 a.u.), and NF (error 0.0005 a.u.). Even in those cases, and in general, the RDM

(P ,Q,G,T1,T2) results for the dipole moment compare very favorably to the accuracy obtained

using SDCI.

For the dipole moment calculation, the RDM method does not provide a bound (lower or

upper) for the full CI result. We also see that once the energy is obtained with high accuracy,

the dipole moment calculation also reaches high accuracy. This is another advantage of the

RDM method over the other traditional variational methods in which a first order error in the

trial wavefunction results in a second order error in the energy, so a poor trial function may

produce amazingly good result on the ground state energy, but not on the other ground state

properties [3].

We close this section with some remarks about the numerics. To solve the SDP’s of the RDM

method we used the SDPARA code [18], which is a parallel implementation of the primal-dual

interior-point method, derived from the SDPA code [19]. The calculations were performed on

an IBM SP RS/6000 (Power3 375MHz processor × 16 CPUs, and 32 GB of main memory).

SDPARA gives very accurate solutions for our problems. As discussed in Section 3, once

we have primal and dual feasible solutions, the quality of the solution can be measured by the

duality gap, or difference between the primal and dual objective functions. SDPARA outputs the

following error values: the relative duality gap |bty−Tr(CX)|/ max{1.0, (|bty|+ |Tr(CX)|)/2},

the primal feasibility error max{|Tr(ApX)− bp| : p = 1, 2, . . . ,m}, and the dual feasibility error:

max{|[
∑m

p=1 Apyp − C − Z]rs| : r, s = 1, 2, . . . , n}. For all numerical experiments we conducted

with the SDPARA, the relative duality gap, the primal feasibility error and the dual feasibility

error were less than 10−7, 10−6, and 10−12, respectively, which give reliable numerical accuracy

for our results.
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6 Conclusions

The RDM method has been used to compute the ground state energy and dipole moment of

a collection of small molecules and molecular ions, both open- and closed-shells. Analysis of

the computational cost shows a large advantage for the dual formulation (as opposed to the

primal one) for solving the semidefinite programs that arise. The addition of the three-index

representability conditions T1 and T2 provided a significant improvement of accuracy both on

the ground state energy and the dipole moment over that obtained using only the P , Q and G

conditions. In the cases studied, the error in the ground state energy (in the model space) was

below 0.9 milli-Hartree (except the O+
2 molecule, 2.8 mH); and the error in the dipole moment

was below 0.0005 a.u. (except the CF molecule, 0.0045 a.u.).

As indicated by the two exceptions (the molecules O+
2 and CF), the (P , Q, G, T1, T2)

family of conditions still leaves room for improvement. Some version of the higher-index diagonal

conditions [5] (which must hold for any choice of one-electron basis) and of the Hamiltonian-

related N -representability conditions (e.g., [8]) may find their roles in the RDM method.

All our calculations were done using a general-purpose semidefinite programming software.

Certainly the systems that we were able to handle this way are very small by the standards

of ab initio quantum chemistry, and a challenge for future work will be to develop optimized

computational methods for the present application while preserving the high accuracy that is

obtained by use of the SDPARA code.

The familiar determinantal approximations are poor at representing the cusp in the wave-

function where two electron positions coincide. For high accuracy calculations the RDM for-

mulations seems a perfect setting for incorporating cusp conditions. This will require choosing

a different basis for the 2-RDM than the one formed by the antisymmetrized products of the

1-RDM basis functions, and it will affect the linear relations between the 1-RDM, 2-RDM, and

the matrices that occur in the representability conditions. Ways of incorporating the cusp into

the 2-RDM need to be investigated.
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Tables

Table 1: The ground state energies (in difference from that of the full CI) calculated by the RDM

method adding (P ,Q), (P ,Q,G), (P ,Q,G,T1), (P ,Q,G,T2), (P ,Q,G,T1,T2) conditions (columns

6–10), and those obtained by methods CCSD(T), BD(T), SDCI and Hartree-Fock (columns

11–14) from Gaussian 98. The last column shows the full CI result. The energy and the energy

differences are in Hartree. Here r is the basis size, N(Nα) is the electron (α electron) number,

and 2S + 1 is the multiplicity. The geometries used are the experimental ones from [31]. The

basis set is STO-6G for all systems.

System State N(Nα) r 2S + 1 ∆EPQ ∆EPQG ∆EPQGT1 ∆EPQGT2 ∆EPQGT1T2 ∆ECCSD(T) ∆EBD(T) ∆ESDCI ∆EHF EFCI

LiH 1Σ+ 4(2) 12 1 −0.0008 −0.0000 −0.0000 −0.0000 −0.0000 +0.0002 +0.0002 +0.0002 +0.0204 −7.9723

BeH 2Σ+ 5(3) 12 2 −0.0106 −0.0000 −0.0000 −0.0000 −0.0000 +0.0006 +0.0005 +0.0008 +0.0222 −15.1163

BH+ 2Σ+ 5(3) 12 2 −0.0155 −0.0000 −0.0000 −0.0000 −0.0000 +0.0006 +0.0005 +0.0008 +0.0295 −24.8014

BH 1Σ+ 6(3) 12 1 −0.0641 −0.0037 −0.0015 −0.0000 −0.0000 +0.0005 +0.0005 +0.0022 +0.0579 −25.0594

CH+ 1Σ+ 6(3) 12 1 −0.0765 −0.0043 −0.0019 −0.0000 −0.0000 +0.0003 +0.0003 +0.0020 +0.0601 −37.8852

CH 2Π 7(4) 12 2 −0.0601 −0.0046 −0.0017 −0.0000 −0.0000 +0.0001 +0.0001 +0.0010 +0.0416 −38.1871

CH− 3Σ− 8(5) 12 3 −0.0113 −0.0000 −0.0000 −0.0000 −0.0000 +0.0001 +0.0001 +0.0001 +0.0185 −37.9672

NH+ 2Π 7(4) 12 2 −0.0610 −0.0043 −0.0019 −0.0000 −0.0000 +0.0001 +0.0001 +0.0008 +0.0403 −54.3974

NH 3Σ− 8(5) 12 3 −0.0119 −0.0000 −0.0000 −0.0000 −0.0000 +0.0002 +0.0002 +0.0002 +0.0231 −54.8162

NH− 2Π 9(5) 12 2 −0.0142 −0.0001 −0.0000 −0.0000 −0.0000 +0.0001 +0.0001 +0.0001 +0.0225 −54.5167

OH+ 3Σ− 8(5) 12 3 −0.0086 −0.0000 −0.0000 −0.0000 −0.0000 −0.0001 −0.0001 −0.0001 +0.0190 −74.7719

OH 2Π 9(5) 12 2 −0.0150 −0.0001 −0.0000 −0.0000 −0.0000 −0.0000 −0.0000 −0.0000 +0.0247 −75.1014

OH− 1Σ+ 10(5) 12 1 −0.0000 −0.0000 −0.0000 −0.0000 −0.0000 +0.0002 +0.0002 +0.0002 +0.0247 −74.8037

HF+ 2Π 9(5) 12 2 −0.0097 −0.0000 −0.0000 −0.0000 −0.0000 −0.0000 −0.0000 −0.0000 +0.0173 −99.1278

HF 1Σ+ 10(5) 12 1 −0.0000 −0.0000 −0.0000 −0.0000 −0.0000 −0.0001 −0.0001 −0.0001 +0.0258 −99.5256

BH2
2A1 7(4) 14 2 −0.0517 −0.0057 −0.0015 −0.0001 −0.0001 +0.0005 +0.0005 +0.0011 +0.0377 −25.7031

CH2
1A1 8(4) 14 1 −0.1186 −0.0118 −0.0032 −0.0001 −0.0001 +0.0005 +0.0005 +0.0031 +0.0610 −38.8106

CH2
3B1 8(5) 14 3 −0.0501 −0.0031 −0.0002 −0.0000 −0.0000 +0.0002 +0.0002 +0.0007 +0.0378 −38.8533

NH2
2B1 9(5) 14 2 −0.0699 −0.0038 −0.0013 −0.0000 −0.0000 +0.0001 +0.0001 +0.0008 +0.0462 −55.4157

H2O+ 2B1 9(5) 14 2 −0.0710 −0.0027 −0.0008 −0.0000 −0.0000 +0.0000 +0.0001 +0.0006 +0.0416 −75.4187

H2O 1A1 10(5) 14 1 −0.0660 −0.0020 −0.0011 −0.0000 −0.0000 +0.0001 +0.0001 +0.0008 +0.0500 −75.7287

NH3
1A1 10(5) 16 1 −0.1442 −0.0109 −0.0024 −0.0003 −0.0003 +0.0003 +0.0003 +0.0018 +0.0628 −56.0142

H3O+ 1A1 10(5) 16 1 −0.1794 −0.0073 −0.0020 −0.0002 −0.0002 +0.0002 +0.0002 +0.0016 +0.0633 −76.1046

CF 2Π 15(8) 20 2 −0.3018 −0.0076 −0.0058 −0.0009 −0.0009 +0.0010 +0.0016 +0.0064 +0.0761 −136.6775

O+
2

2Π g 15(8) 20 2 −0.6932 −0.0167 −0.0147 −0.0028 −0.0028 +0.0033 +0.0034 +0.0124 +0.1701 −148.7933

O2
3Σ g− 16(9) 20 3 −0.3168 −0.0039 −0.0036 −0.0001 −0.0001 +0.0018 +0.0019 +0.0051 +0.1119 −149.1639

SiH 2Π 15(8) 20 2 −0.0488 −0.0031 −0.0009 −0.0001 −0.0001 +0.0024 +0.0024 +0.0030 +0.0366 −288.3775

SiH− 3Σ− 16(9) 20 3 −0.0116 −0.0000 −0.0000 −0.0000 −0.0000 +0.0016 +0.0016 +0.0016 +0.0190 −288.1319

NO− 3Σ− 16(9) 20 3 −0.2410 −0.0027 −0.0023 −0.0001 −0.0001 +0.0009 +0.0015 +0.0036 +0.0828 −128.6657

NF 3Σ− 16(9) 20 3 −0.1859 −0.0015 −0.0012 −0.0000 −0.0000 +0.0013 +0.0019 +0.0028 +0.0603 −153.2449

HS+ 3Σ− 16(9) 20 3 −0.0103 −0.0000 −0.0000 −0.0000 −0.0000 +0.0000 +0.0000 +0.0000 +0.0220 −396.4986
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Table 2: The ground state energies in Hartree calculated by the RDM method adding (P ,Q),

(P ,Q,G), (P ,Q,G,T1), (P ,Q,G,T2), (P ,Q,G,T1,T2) conditions (columns 6–10), and those ob-

tained by methods CCSD(T), BD(T), SDCI and Hartree-Fock (columns 11–14) from Gaussian

98. Here r is the basis size, N(Nα) is the electron (α electron) number, and 2S + 1 is the

multiplicity. The geometries used are the experimental ones from [31]. The basis set is STO-6G

for all systems. The values marked with * in column 11 are calculated by the CCSD method

(CCSD(T) is not able to solve them under the chosen basis).

System State N(Nα) r 2S + 1 EPQ EPQG EPQGT1 EPQGT2 EPQGT1T2 ECCSD(T) EBD(T) ESDCI EHF

Li2 1Σ g+ 6(3) 20 1 −14.8437 −14.8380 −14.8379 −14.8378 −14.8377 −14.8368 −14.8368 −14.8368 −14.8089

B2
3Σ g− 10(6) 20 3 −49.8855 −49.0475 −49.0367 −49.0177 −49.0176 −48.9235 −48.9223 −48.9113 −48.7835

C+
2

4Σ g− 11(7) 20 4 −76.0511 −75.0994 −75.0891 −75.0790 −75.0790 −75.0723* −75.0714 −75.0637 −74.9354

C2
1Σ g+ 12(6) 20 1 −77.3398 −75.4800 −75.4595 −75.4382 −75.4382 −75.4311 −75.4310 −75.3799 −75.1626

C−
2

2Σ g+ 13(7) 20 2 −76.4526 −75.3395 −75.3271 −75.3162 −75.3162 −75.3060 −75.3082 −75.2926 −75.1374

LiF 1Σ+ 12(6) 20 1 −106.7810 −106.4453 −106.4450 −106.4440 −106.4440 −106.4443 −106.4401 −106.4315 −106.3731

BeO 1Σ+ 12(6) 20 1 −90.2936 −89.2128 −89.2091 −89.2015 −89.2015 −89.1967 −89.1938 −89.1802 −89.0517

NaH 1Σ+ 12(6) 20 1 −161.9805 −161.7413 −161.7395 −161.7380 −161.7380 −161.6945 −161.6945 −161.6945 −161.6821

BeF 2Σ+ 13(7) 20 2 −113.9778 −113.6438 −113.6424 −113.6410 −113.6410 −113.6403 −113.6388 −113.6335 −113.5806

BO 2Σ+ 13(7) 20 2 −100.0635 −99.2696 −99.2642 −99.2591 −99.2591 −99.2549 −99.2542 −99.2445 −99.1333

N+
2

2Σ g+ 13(7) 20 2 −109.5025 −108.2520 −108.2370 −108.2246 −108.2246 −108.2132* −108.2158 −108.1974 −108.0162

N2
1Σ g+ 14(7) 20 1 −109.4479 −108.7126 −108.7093 −108.7018 −108.7018 −108.6980 −108.6980 −108.6876 −108.5418

CO+ 2Σ+ 13(7) 20 2 −113.0459 −112.0536 −112.0448 −112.0379 −112.0379 −112.0321 −112.0320 −112.0184 −111.8890

CO 1Σ+ 14(7) 20 1 −113.1175 −112.4547 −112.4501 −112.4439 −112.4439 −112.4418 −112.4407 −112.4300 −112.3033

BF 1Σ+ 14(7) 20 1 −123.9645 −123.6187 −123.6156 −123.6125 −123.6125 −123.6112 −123.6110 −123.6035 −123.5271

AlH 1Σ+ 14(7) 20 1 −241.5615 −241.5095 −241.5081 −241.5073 −241.5073 −241.5005 −241.5005 −241.4996 −241.4571
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Table 3: Dipole moments in a.u. calculated by the RDM method adding (P ,Q), (P ,Q,G),

(P ,Q,G,T1), (P ,Q,G,T2), (P ,Q,G,T1,T2) conditions (columns 6–10), by methods SDCI and

Hartree-Fock (columns 11–12) from Gaussian 98, and by full CI (last column). Here r is the

basis size, N(Nα) is the electron (α electron) number, and 2S + 1 is the multiplicity. The

geometries used are the experimental ones from [31]. The basis set is STO-6G for all systems.

Symbol ”—” in the last column means that we do not have a full CI result.

System State N(Nα) r 2S + 1 DPQ DPQG DPQGT1 DPQGT2 DPQGT1T2 DSDCI DHF DFCI

LiH 1Σ+ 4(2) 12 1 1.8346 1.8449 1.8449 1.8448 1.8448 1.8454 1.9339 1.8448

BeH 2Σ+ 5(3) 12 2 0.1821 0.1984 0.1984 0.1984 0.1984 0.1999 0.2532 0.1984

BH+ 2Σ+ 5(3) 12 2 0.1407 0.1680 0.1679 0.1679 0.1679 0.1672 0.2054 0.1679

BH 1Σ+ 6(3) 12 1 0.0358 0.2333 0.2425 0.2412 0.2412 0.2471 0.3806 0.2412

CH+ 1Σ+ 6(3) 12 1 0.1870 0.4296 0.4420 0.4489 0.4489 0.4569 0.5855 0.4490

CH 2Π 7(4) 12 2 0.2717 0.3811 0.3839 0.3791 0.3791 0.3824 0.4427 0.3792

CH− 3Σ− 8(5) 12 3 0.3203 0.3294 0.3294 0.3294 0.3294 0.3765 0.3641 0.3294

NH+ 2Π 7(4) 12 2 0.5271 0.6831 0.6848 0.6874 0.6874 0.6917 0.7813 0.6875

NH 3Σ− 8(5) 12 3 0.4730 0.4996 0.4996 0.4996 0.4996 0.4996 0.5290 0.4996

NH− 2Π 9(5) 12 2 0.2242 0.2218 0.2219 0.2219 0.2219 0.2498 0.2441 0.2219

OH+ 3Σ− 8(5) 12 3 0.7809 0.8118 0.8118 0.8118 0.8118 0.8117 0.8826 0.8118

OH 2Π 9(5) 12 2 0.4497 0.4744 0.4745 0.4745 0.4745 0.4746 0.5173 0.4745

OH− 1Σ+ 10(5) 12 1 0.1099 0.1099 0.1099 0.1099 0.1099 0.1222 0.1218 0.1099

HF+ 2Π 9(5) 12 2 0.8661 0.9059 0.9060 0.9060 0.9060 0.9059 0.9828 0.9060

HF 1Σ+ 10(5) 12 1 0.4683 0.4683 0.4683 0.4683 0.4683 0.4683 0.5228 0.4683

BH2
2A1 7(4) 14 2 0.0037 0.0328 0.0347 0.0344 0.0344 0.0351 0.0498 0.0344

CH2
1A1 8(4) 14 1 0.2439 0.5073 0.5264 0.5308 0.5308 0.5483 0.6243 0.5311

CH2
3B1 8(5) 14 3 0.0941 0.0965 0.0936 0.0937 0.0937 0.0939 0.0964 0.0937

NH2
2B1 9(5) 14 2 0.6433 0.6817 0.6856 0.6895 0.6895 0.6908 0.7207 0.6896

H2O+ 2B1 9(5) 14 2 0.7921 0.8916 0.8957 0.8985 0.8985 0.9001 0.9572 0.8987

H2O 1A1 10(5) 14 1 0.6003 0.6467 0.6461 0.6492 0.6492 0.6509 0.6931 0.6493

NH3
1A1 10(5) 16 1 0.0785 0.0748 0.0791 0.0799 0.0799 0.0803 0.0789 0.0800

H3O+ 1A1 10(5) 16 1 0.6435 0.7106 0.7179 0.7202 0.7201 0.7216 0.7504 0.7203

LiF 1Σ+ 12(6) 20 1 4.6284 0.8191 0.8235 0.8433 0.8433 0.9697 1.4537 —

BeO 1Σ+ 12(6) 20 1 5.1010 0.7407 0.8056 0.9072 0.9077 1.1655 1.7150 —

NaH 1Σ+ 12(6) 20 1 2.0351 2.4098 2.4125 2.4155 2.4155 2.4409 2.6303 —

BeF 2Σ+ 13(7) 20 2 2.9972 0.2181 0.2103 0.2001 0.2001 0.1430 0.1428 —

BO 2Σ+ 13(7) 20 2 2.0005 0.3737 0.4022 0.4218 0.4218 0.4937 0.6661 —

CO+ 2Σ+ 13(7) 20 2 1.1007 0.7792 0.8177 0.8393 0.8393 0.9237 1.0091 —

CO 1Σ+ 14(7) 20 1 1.1469 0.2399 0.2382 0.2291 0.2292 0.2117 0.0402 —

BF 1Σ+ 14(7) 20 1 2.1362 0.5413 0.5274 0.5236 0.5236 0.4906 0.4082 —

AlH 1Σ+ 14(7) 20 1 0.4699 0.5311 0.5358 0.5382 0.5381 0.5385 0.5065 —

CF 2Π 15(8) 20 2 1.6818 0.4505 0.4480 0.4255 0.4255 0.3929 0.2440 0.4210

SiH 2Π 15(8) 20 2 0.1202 0.0795 0.0838 0.0920 0.0920 0.0900 0.0700 0.0919

SiH− 3Σ− 16(9) 20 3 0.1317 0.1244 0.1244 0.1244 0.1244 0.1308 0.1669 0.1244

NO− 3Σ− 16(9) 20 3 0.7477 0.3683 0.3681 0.3592 0.3592 0.3755 0.1723 0.3591

NF 3Σ− 16(9) 20 3 1.1850 0.2502 0.2500 0.2415 0.2415 0.2320 0.0773 0.2410

HS+ 3Σ− 16(9) 20 3 0.4708 0.5126 0.5126 0.5127 0.5127 0.5135 0.5834 0.5127

30


