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Abstract Using the language of pseudospectra, we study the behavior of matrix
eigenvalues under two scales of matrix perturbation. First, we relate Lidskii’s analysis
of small perturbations to a recent result of Karow on the growth rate of pseudospectra.
Then, considering larger perturbations, we follow recent work of Alam and Bora in
characterizing the distance from a given matrix to the set of matrices with multiple
eigenvalues in terms of the number of connected components of pseudospectra.

Mathematics Subject Classification (2000) 15A18 · 65F15

1 Introduction

Consider a fixed n-by-n complex matrix A. We denote the smallest singular value
of A by σ(A). An eigenvalue of A is simple if it has algebraic multiplicity one, and
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28 J. V. Burke et al.

multiple otherwise; the eigenvalue is nonderogatory if its geometric multiplicity is one,
and derogatory otherwise. An eigenvalue is semisimple if its geometric and algebraic
multiplicities coincide.

For ε ≥ 0, the ε-pseudospectrum of A is the set

�ε(A) = {w ∈ C : σ(A − w I ) ≤ ε}. (1.1)

This definition is slightly different from that of [16], the canonical reference on
pseudospectra: the definition there corresponds to what we call the “strict pseudo-
spectrum” (see Sect. 3). Clearly �0(A) is just the spectrum of A: we denote it simply
�(A). Pseudospectra are just sets of all eigenvalues of matrices within a given distance:

�ε(A) =
⋃

‖X−A‖≤ε

�(X). (1.2)

These definitions are for the spectral norm, to which we restrict attention.
A simple application of the maximum modulus principle shows that each connected

component of �ε(A) contains an eigenvalue of A. Consider a particular eigenvalue z
of A, and denote the pseudospectral component containing z by �z

ε(A). For small ε,
distinct eigenvalues correspond to distinct components: in Wilkinson’s terminology
[18], each component then consists of all possible “successors” of the corresponding
eigenvalue associated with perturbations to A of size no more than ε. As pointed out in
[18], for larger ε, components coalesce, and the notion of “successor” is more subtle.

Any simple eigenvalue z is an analytic function, locally, of the underlying matrix
A; the gradient of this function is vu∗ for corresponding unit left and right eigenvec-
tors u and v. Consequently, for small ε ≥ 0, the pseudospectral component �z

ε(A)

is approximately a ball centered at z of radius |u∗v|−1ε, and hence grows roughly
linearly in ε at rate |u∗v|−1, the classical “condition number” of the eigenvalue of z.
Furthermore, for small ε, the component �z

ε(A) is a convex neighborhood of z [14].
This convexity property holds more generally for nonderogatory eigenvalues, but may
fail in general [4].

We study here two questions on the growth of pseudospectral components as ε

increases.

• What is the growth rate of components corresponding to multiple eigenvalues?
• How far can pseudospectral components grow before coalescing?

We answer the first question using Lidskii’s perturbation theory for eigenvalues with
arbitrary Jordan structure [12], as reviewed in [13]. The latter work introduced a
“Hölder condition number” for eigenvalues, which, following recent work of Karow
[10], we re-interpret in terms of pseudospectral growth rate. For the second ques-
tion, we follow the philosophy of recent work of Alam and Bora [1] in relating the
coalescence of pseudospectral components to the problem of finding the distance from
A to the set of matrices with multiple eigenvalues.

The results we describe here are not new, but we think they deserve a wide audience.
Our aim here is to highlight their interest and relationships with a fresh and concise
presentation.
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Spectral conditioning and pseudospectral growth 29

2 Lidskii’s perturbation theory

Consider an eigenvalue z of the matrix A. As we mentioned in the previous section,
the classical condition number of this eigenvalue, namely

κ = lim sup
A �=W→A, w→z, w∈�(W )

|w − z|
‖W − A‖ ,

describes the sensitivity of the eigenvalue to small changes in A. We can describe it
alternatively as the infimum of those constants κ ′ such that

|w − z| ≤ κ ′‖W − A‖ for all (W, w) near (A, z) with w ∈ �(W ).

As is well-known, if the eigenvalue z is not semisimple, its classical condition
number is infinite. In this case however, we can still quantify conditioning by switching
to a logarithmic scale [5,11,13]. Let us define the condition exponent of z by

β = lim inf
A �=W→A, w→z, w∈�(W )

log |w − z|
log ‖W − A‖ .

Alternatively, β is the supremum of those constants β ′ such that

|w − z| ≤ ‖W − A‖β ′
for all (W, w) near (A, z) with w ∈ �(W ).

As essentially observed in [13] (an observation that follows from Theorem 2.4 below),
fundamental work of Lidskii [12] implies the following characterization.

Theorem 2.1 (condition exponent) The reciprocal of the condition exponent of an
eigenvalue is its order as a root of the minimal polynomial.

In particular, the condition exponent of a simple (or semisimple) eigenvalue is one.
Equipped with the idea of the condition exponent, we can then refine our measure

of conditioning by defining the condition coefficient

α = lim sup
A �=W→A, w→z, w∈�(W )

|w − z|1/β

‖W − A‖ .

Alternatively, α is the infimum of those constants α′ such that

|w − z| ≤ (α′‖W − A‖)β for all (W, w) near (A, z) with w ∈ �(W ).

The pair (β, α) is very close to the notion of the Hölder condition number introduced
in [13]. Indeed, we see below that it is precisely equivalent.

To explore these ideas further, let us fix the following notation.

123



30 J. V. Burke et al.

Assumption 2.2 The matrix A ∈ Mn has an eigenvalue z ∈ C, and transforms to
Jordan form via a matrix P ∈ Mn:

P−1 AP =

⎡

⎢⎢⎢⎢⎢⎣

J
J

. . .

J
Ā

⎤

⎥⎥⎥⎥⎥⎦
where J =

⎡

⎢⎢⎢⎢⎢⎣

z 1 0 · · · 0
0 z 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
0 0 0 · · · z

⎤

⎥⎥⎥⎥⎥⎦
∈ Mm .

Furthermore, the Jordan block J occurs k times, and each Jordan block in the matrix
Ā is either smaller than J or corresponds to a different eigenvalue. The columns of P
are p1, p2, . . . , pn, and the rows of P−1 are q1, q2, . . . , qn, and we define matrices

Q̃ =

⎡

⎢⎢⎢⎣

qm

q2m
...

qkm

⎤

⎥⎥⎥⎦ and P̃ = [p1, pm+1, . . . , p(k−1)m+1]

having rows and columns respectively the left and right eigenvectors corresponding
to the k m-by-m Jordan blocks for the eigenvalue z, and a quantity

α̃ = ‖P̃ Q̃‖.

Under this assumption, m is the order of the eigenvalue z as a root of the minimal
polynomial for A. Hence, by Theorem 2.1, the condition exponent of z is 1/m. Note
that α̃ is the norm of the projector onto the geometric eigenspace for z, not the norm
of the projector onto the full invariant subspace. We will establish below that α̃ equals
α, the condition coefficient for the eigenvalue z. The basic tool for doing so is the
following special case of the main result in [13].

Theorem 2.3 (eigenvalue perturbation) Suppose Assumption 2.2 holds, and consider
any sequences of numbers εr ↓ 0 and matrices Ar ∈ Mn satisfying

Ar = A + εr B + o(εr ) as r → ∞

for some matrix B ∈ Mn. Denote the eigenvalues of the matrix Q̃ B P̃ ∈ Mk by
w1, w2, . . . , wk (listed by algebraic multiplicity). Then km of the eigenvalues of Ar

can be expressed in the form

z + γ sw
1/m
j ε

1/m
r + o(ε

1/m
r ), for s = 0, 1, . . . , m − 1, and j = 1, 2, . . . , k,

where w
1/m
j denotes any mth root of w j and γ is a primitive mth root of unity, while the

remaining n − km eigenvalues are either within a distance o(ε
1/m
r ) of the eigenvalue

z or remain uniformly bounded away from z as r → ∞.
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Spectral conditioning and pseudospectral growth 31

As a consequence of this eigenvalue perturbation theorem, we derive a recent result
concerning pseudospectral growth due to Karow [10]. Specifically, we show that small
pseudospectral components are approximately disks centered at eigenvalues. We de-
note the closed unit disk in C by D. The distance from a point s ∈ C to a set T ⊂ C
is

dT (s) = inf
t∈T

|s − t |

and the Hausdorff distance between T and another set S ⊂ C is

h(S, T ) = max
{

sup
s∈S

dT (s) , sup
t∈T

dS(t)
}
.

Theorem 2.4 (pseudospectral growth) Suppose Assumption 2.2 holds, so in partic-
ular, the eigenvalue z is a zero of multiplicity m for the minimal polynomial of the
matrix A. Then the Hausdorff distance between the pseudospectral component �z

ε(A)

and the disk z + (̃αε)1/m D is o(ε1/m) as ε ↓ 0.

Proof Without loss of generality we can suppose the eigenvalue z is zero. If the result
fails to hold, there is a sequence of numbers εr ↓ 0 and a constant κ > 0 such that

h
(
(̃αεr )

1/m D,�0
εr

(A)
)

> κε
1/m
r for r = 1, 2, . . . .

Consequently, we can assume the existence of a sequence of points zr ∈ C such that
either

zr ∈ �0
εr

(A) and |zr | > (̃α1/m + κ)ε
1/m
r (2.5)

or
|zr | ≤ (̃αεr )

1/m and d�0
εr (A)(zr ) > κε

1/m
r . (2.6)

By taking a subsequence, we can suppose in fact that one of these conditions holds
for all r .

Let us begin by supposing condition (2.5) holds for all r . Clearly zr → 0. Fur-
thermore, there is a sequence of matrices Ar ∈ Mn satisfying ‖Ar − A‖ ≤ εr and
zr ∈ �(Ar ) for all r . Clearly Ar �= A for all large r , so we can suppose the sequence
of numbers δr = ‖Ar − A‖ is never zero. Taking a subsequence, we can assume
δ−1

r (Ar − A) converges to a matrix B with norm one, so

Ar = A + δr B + o(δr ) as r → ∞.

We can now apply Theorem 2.3 (eigenvalue perturbation). After taking a further
subsequence, there is an eigenvalue w of the matrix Q̃ B P̃ such that

zr = δ
1/m
r w1/m + o(δ

1/m
r ),

where w1/m is an mth root of w. Since w is a nonzero eigenvalue of Q̃ B P̃ (by the
second condition in (2.5)), it is also an eigenvalue of the matrix P̃ Q̃ B, which has norm
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32 J. V. Burke et al.

no larger than α̃. Hence we obtain

|zr | ≤ (εr α̃)1/m + o(ε
1/m
r ),

contradicting our assumption that condition (2.5) holds.
Suppose on the other hand that condition (2.6) holds for all r . Since 0 ∈ �0

εr
(A),

we know that each point zr is nonzero, so after taking a subsequence we can suppose
that |zr |−1zr approaches a point w on the unit circle.

Fix a pair of unit left and right singular vectors u, v ∈ Cn corresponding to the larg-
est singular value α̃ of the matrix P̃ Q̃. Since u∗ P̃ Q̃v = α̃, we deduce α̃ ∈ �(Q̃vu∗ P̃),
and so α̃wm ∈ �(Q̃(wmvu∗)P̃). Theorem 2.3 (eigenvalue perturbation) now shows

(̃αδ)1/mw ∈ �(A + δwmvu∗) + o(δ1/m) ⊂ �δ(A) + o(δ1/m) (2.7)

as δ ↓ 0. In fact we can replace the pseudospectrum �δ(A) by its component �0
δ (A)

on the right-hand side: otherwise there would exist a sequence δr ↓ 0 and a nonzero
eigenvalue z′ of the matrix A such that

(̃αδr )
1/mw ∈ �z′

δr
(A) + o(δ

1/m
r ) as r → ∞,

and this is impossible since the right-hand converges to the singleton {z′} as r → ∞.
In inclusion (2.7), let δ = α̃−1|zr |m . Since δ ≤ εr (by condition (2.6)), we deduce

|zr |w ⊂ �0
εr

(A) + o(zr ),

as r → ∞, so

d�0
εr (A)(zr ) ≤

∣∣∣|zr |w + o(zr ) − zr

∣∣∣ = o(zr ) = o(ε
1/m
r ).

But this contradicts condition (2.6). �
A more general version of Theorem 2.4 appears in an unpublished thesis of Karow

[10, Theorems 2.6.6 and 5.4.4]. Whereas the argument presented above relies on a
direct eigenvalue perturbation analysis using the pseudospectral representation (1.2),
Karow’s elegant proof instead relies on the representation (1.1). His argument depends
on the following fact (see also the unpublished thesis of Ilahi [9], [5, Proposition 2.1],
and [11, Remark 4.4]): whenever z ∈ C is a zero of multiplicity m for the minimal
polynomial of the matrix A, we have

σ(A − w I ) = |w − z|m
α̃

+ O(|w − z|m+1) (2.8)

for points w ∈ C near z (where α̃ is defined in Assumption 2.2). For comparison, we
end this section with a short proof of Eq. (2.8): Theorem 2.4 (pseudospectral growth)
follows immediately.
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Spectral conditioning and pseudospectral growth 33

Without loss of generality, we can consider the eigenvalue z = 0 of a singular
matrix A ∈ Mn . Revising the notation of Assumption 2.2, we instead write

P−1 AP =
[

N 0
0 Â

]
,

where the matrices P and Â are invertible and the nilpotent matrix N satisfies N m = 0
but N m−1 �= 0. Then for small w ∈ C, we have

|w|m
σ(A − w I )

= |w|m−1‖(I − w−1 A)−1‖

= |w|m−1
∥∥∥∥P

[
(I − w−1 N )−1 0

0 (I − w−1 Â)−1

]
P−1

∥∥∥∥

=
∥∥∥∥∥|w|m−1 P

[∑m−1
j=0 (w−1 N ) j 0

0 (I − w−1 Â)−1

]
P−1

∥∥∥∥∥

=
∥∥∥∥∥P

[( |w|
w

N
)m−1 + O(w) 0

0 O(wm)

]
P−1

∥∥∥∥∥

=
∥∥∥∥P

[
N m−1 0

0 0

]
P−1

∥∥∥∥ + O(w) = α̃ + O(w).

Equation (2.8) now follows.

3 Nearest matrix with a multiple eigenvalue

A well-known problem studied by many authors concerns the distance from a given
square matrix A to the set of matrices with multiple eigenvalues. The survey [8]
summarizes early work on this question and its relationship to ill-conditioning. Sev-
eral authors have approached the problem and generalizations by considering when
components of the pseudospectrum �ε(A) merge as ε grows. In particular, [18] con-
siders the coalescence of components of the pseudospectrum (which is called there
the “fundamental inclusion domain”), defined via Eq. (1.2) but using a general matrix
norm. Merging of more general partitions of the pseudospectrum is studied in [6,7]. In
related earlier work on “spectrum separation” [17], �ε(A) is called the “ε-spectrum”.
More recently, Alam and Bora use the pseudospectral approach to prove the following
result [1].
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34 J. V. Burke et al.

Theorem 3.1 (eigenvalue coalescence) For any n > 1, the distance from a given
n-by-n matrix A to the set of matrices with multiple eigenvalues is the minimum value
of ε ≥ 0 such that the ε-pseudospectrum of A has less than n components.

In this section we give a new proof of this result, following the philosophy of Alam
and Bora in [1], but more topological in spirit, particularly in the derivation of the
lower bound on the distance to the set of matrices with multiple eigenvalues. We also
follow [1] in showing that the desired multiple eigenvalues are exactly the points lying
in the closure of more than one component of the strict pseudospectrum for the critical
value of ε.

For large ε, the pseudospectrum �ε(A) is connected. For example, providing ε is
larger than the finite number

max
{
σ(A − z I ) : z ∈ conv �(A)

}
,

the connected set conv �(A) must be contained in �ε(A). But the spectrum �(A)

intersects each component of �ε(A), which must therefore be connected.
Denoting the number of components of any set S ⊂ C by comp S, we can therefore

define a number
ε̄ = inf

{
ε ≥ 0 : comp �ε(A) < n

}
. (3.2)

Lemma 3.3 The infimum in Eq. (3.2) is attained.

Proof If the result fails, then comp �ε̄(A) = n and yet, for some sequence εr > ε̄

decreasing to ε̄, we have �εr (A) < n. But this is a contradiction, because the com-
pact sets �εr (A) converge to the compact set �ε̄(A), and the function comp is lower
semicontinuous with respect to convergence of compact sets [3, Proposition 4.1]. �

If ε̄ = 0, we have nothing more to prove, so we suppose ε̄ > 0. We next consider
the strict pseudospectrum

	 = {z ∈ C : σ(A − z I ) < ε̄},

which is an open set with closure the pseudospectrum �ε̄(A) [2, Corollary 4.3].

Lemma 3.4 The strict pseudospectrum 	 has n components.

Proof Note that, just as for pseudospectra, each component of 	 contains an eigen-
value, so if the claim fails, two eigenvalues z0 �= z1 of the matrix A lie in the same
component of 	. Hence there is a continuous path t �→ z(t) ∈ 	 (for t ∈ [0, 1])
satisfying z(0) = z0 and z(1) = z1. Consequently, the number

ε′ = max
t∈[0,1] σ(A − z(t)I )

is strictly less than ε̄. Furthermore, this path shows that z0 and z1 lie in the same
component of the pseudospectrum �ε′(A), so comp �ε′(A) < n, contradicting the
definition of ε̄. �
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Spectral conditioning and pseudospectral growth 35

The strict pseudospectrum 	 is therefore the disjoint union of nonempty connected
open sets 	1,	2, . . . , 	n .

Lemma 3.5 For any matrix E with ‖E‖ < ε̄, the matrix A + E has exactly one
eigenvalue in each of the n components of the strict pseudospectrum 	. Furthermore,
each of these eigenvalues is simple.

Proof Intuitively, the outline of the proof is straightforward. If we let ε = ‖E‖, then
each of the n components of 	 must contain exactly one component of the pseudo-
spectrum �ε(A), and by using the continuity of the spectrum, each of these latter
components must contain exactly one eigenvalue of A + E . Formalizing this argu-
ment takes a little care.

Denote the components of �ε(A) by C1, C2, . . . , Cn , each of which is compact
because �ε(A) is compact. Since �ε(A) ⊂ 	 and each C j contains an eigenvalue of
A, we can suppose C j ⊂ 	 j for each j . Now consider the number

t̄ = sup
{

t ′ ∈ [0, 1] : �(A + t E) ∩ C1 �= ∅ ∀t ∈ [0, t ′]
}
.

We claim the supremum above is attained. If t̄ = 0, there is nothing to prove, so
suppose t̄ > 0: we just need to show �(A + t̄ E) ∩ C1 �= ∅. Choose any sequence
t1, t2, . . . ∈ (0, t̄) approaching t̄ and corresponding points zr ∈ �(A + tr E) ∩ C1.
Since C1 is compact, after taking a subsequence we can suppose zr approaches some
point z̄ ∈ C1. But the set-valued map � taking a matrix to its spectrum is continuous,
so z̄ ∈ �(A + t̄ E), as required.

Now suppose t̄ < 1. We can then choose another sequence t1, t2, . . . ∈ (t̄, 1)

approaching t̄ with �(A + tr E) ∩ C1 = ∅. Since ‖tr E‖ ≤ ε for all r , we have
�(A + tr E) ⊂ �ε(A), so in fact �(A + tr E) ⊂ ∪ j>1C j . Since the right hand side
is closed, it also contains �(A + t̄ E), by continuity of �, giving the contradiction
�(A + t̄ E) ∩ C1 = ∅. Hence we must have t̄ = 1.

We have thus shown that the component C1 (and hence 	1) contains an eigenvalue
of the matrix A + E . But the same holds for each component, so the result follows.

�
Notice that Lemma 3.5 shows that the number ε̄ is a lower bound on the distance

to the set of matrices with multiple eigenvalues. The last step in our proof relies on
the following well-known tool for recognizing multiple eigenvalues (which follows
quickly from the Jordan form, for example).

Proposition 3.6 (orthogonal eigenvectors) Consider a matrix B ∈ Mn with an eigen-
value z corresponding to left and right eigenvectors u, v ∈ Cn: in other words, u and
v are nonzero and satisfy Bv = zv and u∗ B = zu∗. If u∗v = 0, then the eigenvalue
z is multiple.

Proceeding with our proof of Theorem 3.1, observe that each component 	 j has
connected closure, and the union of these closures is the set cl 	 = �ε̄(A), which has
less than n components. Hence there must exist at least one point z̄ lying in the closure
of two distinct components of 	. We conclude our proof by showing that any such z̄
is our required multiple eigenvalue.
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36 J. V. Burke et al.

Lemma 3.7 The following properties of a point z̄ ∈ C are equivalent:

(i) z̄ lies in the closure of two distinct components of 	;
(ii) there exists a matrix E such that ‖E‖ = ε̄ and z̄ is a multiple eigenvalue of

A + E.

Proof Suppose property (i) holds. Since the components of 	 are disjoint, we imme-
diately deduce σ(A − z̄ I ) = ε̄. If this singular value is multiple, then a standard
application of the singular value decomposition gives a matrix E such that ‖E‖ = ε̄

and A − z̄ I + E has rank no more than n − 2. In this case, z̄ must be a multiple
eigenvalue of A + E , as required.

We can therefore assume the singular value σ(A − z̄ I ) is simple. Identify the space
C as a Euclidean space, with inner product 〈w, z〉 = Re (w∗z). In this setting, the func-
tion g : C → R defined by g(z) = σ(A − z I ) is continuously differentiable around z̄,
with gradient ∇g(z̄) = −u∗v, for any corresponding normalized left and right singular
vectors u and v [15]. If this gradient is nonzero, then the set 	 = {z ∈ C : g(z) < ε}
is bounded near z̄ by a smooth curve through z̄, using the implicit function theorem,
so is locally connected. But this contradicts the fact that z̄ lies in the closure of two
distinct components of 	.

The only remaining possibility is u∗v = 0. But a quick calculation shows that if we
set E = −ε̄uv∗, then ‖E‖ = ε̄, and u and v are respectively left and right eigenvectors
for the matrix A + E , corresponding to the eigenvalue z̄. Property (ii) then follows
from Proposition 3.6.

Conversely, suppose property (ii) holds. If property (i) fails, then z̄ lies in the closure
of a unique component of 	, say 	1. Hence some open neighborhood U of z̄ is disjoint
from each component 	 j for j > 1. Consider any sequence tr ∈ (0, 1) converging to

1. For each r , the matrix A + tr E has a simple eigenvalue, say z j
r , in each component

	 j , by Lemma 3.5. After taking a subsequence, we can suppose z j
r → z j ∈ cl 	 j as

r → ∞, and the numbers z j are just the eigenvalues of A + E , listed by algebraic
multiplicity, since

det(z I − (A + E)) = lim
r→∞ det(z I − (A + tr E)) = lim

r→∞

n∏

j=1

(z − z j
r ) =

n∏

j=1

(z − z j ).

But by assumption, if j > 1, then z j
r �∈ U for all large r , and hence z j �∈ U . In

particular, z j �= z̄ for all j > 1, so z̄ cannot be a multiple eigenvalue of A + E . This
is a contradiction. �
This concludes the proof of Theorem 3.1, and the claim following it.

In Lemma 3.7, the multiple eigenvalue z̄ may vary in character, depending on the
case. Consider, for example, the two matrices

[
1 0
0 −1

]
and

[
1 1
0 −1

]
.

In the first case, the nearest matrix with a double eigenvalue is the zero matrix, whereas
in the second, the nearest such matrix is similar to a two-by-two Jordan block [4]
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Spectral conditioning and pseudospectral growth 37

The techniques of Lemmas 3.3, 3.4 and 3.5 extend easily to an arbitrary matrix A
whose distinct eigenvalues z1, z2, . . . , zk have algebraic multiplicities m1, m2, . . . , mk

respectively. In the definition of the number ε̄, Eq. (3.2), if we replace the number of
components n by k, Lemmas 3.3 and 3.4 (with n replaced by k) hold with unchanged
proofs. A result analogous to Lemma 3.5 also holds: specifically, for any matrix E
satisfying ‖E‖ < ε̄, the matrix A + E has exactly m j eigenvalues (counted by multi-
plicity) in the component 	 j of the strict pseudospectrum 	 containing z j . Again, the
proof is largely unchanged. We simply replace the condition �(A + t E) ∩ C1 �= ∅ in
the definition of the number t̄ by the condition that the matrix A + t E has m1 eigen-
values (counted by multiplicity) in the set C1, and then again use the continuity of the
mapping from a matrix to the set of all vectors obtained by listing the eigenvalues by
multiplicity in all possible orders. Maintaining this setting and turning to Lemma 3.7,
the same proof still shows that property (i) implies property (ii). On the other hand, if
property (ii) holds, then certainly the eigenvalue z̄ must lie in the closure of at least
one component of 	, say 	1, and if the multiplicity m1 is one, then the same argument
as for Lemma 3.7 shows that z̄ must also lie in the closure of another component.
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