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Abstract. Primal-dual interior-point path-following methods for semidefinite programming are
considered. Several variants are discussed, based on Newton’s method applied to three equations:
primal feasibility, dual feasibility, and some form of centering condition. The focus is on three such
algorithms, called the XZ, XZ+ZX, and Q methods. For the XZ+ZX and Q algorithms, the Newton
system is well defined and its Jacobian is nonsingular at the solution, under nondegeneracy assump-
tions. The associated Schur complement matrix has an unbounded condition number on the central
path under the nondegeneracy assumptions and an additional rank assumption. Practical aspects are
discussed, including Mehrotra predictor-corrector variants and issues of numerical stability. Com-
pared to the other methods considered, the XZ+ZX method is more robust with respect to its ability
to step close to the boundary, converges more rapidly, and achieves higher accuracy.
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1. Introduction. Let Sn denote the vector space of real symmetric n × n ma-
trices. Denote the dimension of this space by

n2 =
n(n+ 1)

2
.(1.1)

The standard inner product on Sn is

A •B = tr AB =
∑
i,j

AijBij .

By X � 0 (X � 0), where X ∈ Sn, we mean that X is positive semidefinite (positive
definite).

Consider the semidefinite program (SDP)

min
X∈Sn

C •X
s.t. Ak •X = bk, k = 1, . . . ,m,

X � 0,

(1.2)
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where b ∈ Rm, C ∈ Sn, and Ak ∈ Sn, k = 1, . . . ,m. The dual SDP is

max
y∈Rm,Z∈Sn

bT y

s.t.
∑m
k=1 ykAk + Z = C,

Z � 0.

(1.3)

The following assumptions hold throughout the paper.
Assumption 1. There exists a primal feasible point X � 0, and a dual feasible point
(y, Z) with Z � 0.
Assumption 2. The matrices Ak, k = 1, . . . ,m, are linearly independent; i.e., they
span an m-dimensional linear space in Sn.

The central path consists of points (Xµ, yµ, Zµ) ∈ Sn × Rm × Sn satisfying the
primal and dual feasibility constraints as well as the centering condition

XµZµ = µI(1.4)

for some µ ∈ R, µ > 0. It is well known [11, 7] that under Assumptions 1 and 2
(Xµ, yµ, Zµ) exists and is unique for all µ > 0, and that

(X, y, Z) = lim
µ→0

(Xµ, yµ, Zµ)(1.5)

exists and solves the primal and dual SDPs. Furthermore, because Xµ and Zµ com-
mute, there exists an orthogonal matrix Qµ such that

Xµ = Qµ Diag(λµ1 , . . . , λ
µ
n) (Qµ)T , Zµ = Qµ Diag(ωµ1 , . . . , ω

µ
n) (Qµ)T ,(1.6)

where the λµi and ωµi , respectively the eigenvalues of Xµ and Zµ, satisfy

λµi ω
µ
i = µ, i = 1, . . . , n.(1.7)

Without loss of generality, assume that

λµ1 ≥ · · · ≥ λµn and ωµ1 ≤ · · · ≤ ωµn.(1.8)

As µ → 0, the centering condition (1.4) reduces to the complementarity condition
XZ = 0, implying that

X = Q Diag(λ1, . . . , λn) QT , Z = Q Diag(ω1, . . . , ωn) QT(1.9)

for some orthogonal matrix Q, with the eigenvalue complementarity condition λiωi
= 0, i = 1, . . . , n. Observe that λi and ωi are the limits of λµi and ωµi as µ → 0, and
Q may be taken to be a limit point (not necessarily unique) of the set {Qµ : µ > 0}.
We have

λ1 ≥ · · · ≥ λn and ω1 ≤ · · · ≤ ωn.(1.10)

Interior-point methods for semidefinite programming were originally introduced
by [11, 4]. Early papers on primal-dual methods include [17] and [6]. A preliminary
version of the present work appeared as [2]. Convergence analysis of primal-dual path-
following methods for SDP appeared first in [7, 13, 12]. We are primarily concerned
with four methods, which we call the XZ, XZ+ZX, Nesterov–Todd (NT), and Q meth-
ods. The XZ method first appeared in [6, 7]. The XZ+ZX method was introduced in
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[2] and was recently analyzed in [8, 9]. The NT method was given in [13, 12] and its
implementation was recently discussed in [16]. The Q method originally appeared in
[1]. Many other papers on semidefinite programming have recently been announced.

The paper is organized as follows. In section 2 we introduce several algorithms
in a common framework based on Newton’s method, focusing on the XZ and XZ+ZX
variants. In section 3 we study the Jacobian of the Newton system for the various
methods under nondegeneracy assumptions, and discuss implications for local con-
vergence rates. In section 4 we consider the conditioning of the Schur complement
matrix on the central path, again under nondegeneracy assumptions. This leads to
the issue of numerical stability, discussed in section 5. We introduce the Q method
in section 6. In section 7, we present computational results.

Our main focus is on the nondegenerate case; this assumption (defined in section
3) implies unique primal and dual solutions. We take the view that it is important to
understand how methods behave on nondegenerate problems. This does not discount
the significance of degenerate problems that may arise in applications, as is common
in linear programming (LP).

In practice, many semidefinite programs are block diagonal. Everything in this
paper extends easily to the block-diagonal case. Note that LP is the special case
where all block sizes are one.

A word about notation: we use the symbols X, y, and Z to mean several things.
Depending on the context, they may refer to the variables of the SDP, the iterates
generated by a method, or a solution of the SDP.

2. The methods in a general framework. We consider only primal-dual
interior-point path-following methods, generating a sequence of iterates approximat-
ing the central path and converging to the primal and dual solutions. See [18] for
a detailed discussion of such methods for LP. In LP, the basic iterative step can be
readily derived using Newton’s method. For SDP, points on the central path satisfy
the nonlinear equation 

∑m
k=1 ykAk + Z − C
A1 •X − b1

...
Am •X − bm
XZ − µI

 = 0.(2.1)

However, the matrix XZ is not symmetric in general. Consequently, the domain and
range of the function defined by the left-hand side of (2.1) are not the same spaces, and
Newton’s method is not directly applicable. For LP, on the other hand, the standard
primal-dual interior-point method is obtained by applying Newton’s method to (2.1).
In this case, X and Z are diagonal, and XZ is also diagonal, so the domain and range
of (2.1) reduce to R2n+m.

A key question in formulating primal-dual interior-point methods for SDP is there-
fore, how should one appropriately formulate Newton’s method? We consider here
two possibilities. Other choices are discussed at the end of this section.

The XZ method. Use the centering condition (1.4) directly and view the left-
hand side of (2.1) as a function whose domain and range are both U =
Rn×n × Rm × Rn×n. Then Newton’s method is well defined, though the
iterates are not symmetric matrices. (Actually, only the X iterates are not
symmetric, since the dual feasibility equation forces Z to be symmetric.) The
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X iterates can then be explicitly symmetrized before continuing with the next
iteration. Consequently, this method is not strictly a Newton method. A
different iteration is obtained by using ZX = µI instead of (1.4).

The XZ + ZX method. Rewrite (1.4) in the symmetric form

XZ + ZX = 2µI.(2.2)

Substituting (2.2) for (1.4) in (2.1) gives a mapping with domain and range
both given by V = Sn × Rm × Sn. Application of Newton’s method to (2.2)
leads to symmetric matrix iterates X and Z.

We observe that (1.4) and (2.2) are equivalent when X � 0 (or Z � 0). That
(1.4) implies (2.2) is immediate. That the converse holds for X � 0 is seen by using
X = QΛQT to reduce (2.2) to Λ(QTZQ) + (QTZQ)Λ = 2µI, with Λ diagonal and
nonnegative and QTQ = I. The entries on the left-hand side are (λi + λj)(QZQ

T )ij ,
and so, since the off-diagonal entries must be zero, either λi = λj = 0 or (QZQT )ij = 0
when i 6= j. Thus, Λ(QTZQ) is diagonal, and (1.4) holds.

We now examine the steps defined by these methods in more detail. The Newton
step for the XZ method satisfies the linear equation

X ∆Z + ∆X Z = µI −XZ.(2.3)

Let nvec map Rn×n to Rn2

, stacking the columns of a matrix in a vector. Then we
may rewrite (2.3) in the form

(I ⊗X) nvec (∆Z) + (Z ⊗ I) nvec (∆X) = nvec (µI −XZ),(2.4)

where ⊗ denotes the standard Kronecker product (see the Appendix, equation (7.3)).
To discuss the XZ+ZX method, we introduce a symmetric version of the Kro-

necker product. The Newton correction for (2.2) satisfies the linear equation

X ∆Z + ∆Z X + ∆X Z + Z ∆X = 2µI −XZ − ZX,(2.5)

where ∆X and ∆Z are symmetric. Let svec be an isometry identifying Sn with Rn2

,
so that K •L = svec (K)T svec (L) for all K,L ∈ Sn (see Appendix). Then (2.5) can
be written as

(Z ~ I) svec (∆X) + (X ~ I) svec (∆Z) = svec

(
µI − 1

2
(XZ + ZX)

)
,(2.6)

where ~ denotes the symmetric Kronecker product defined in the Appendix (see
(7.6)).

We shall now describe both methods in a common framework. Let vec denote
either nvec or svec , depending on the context. Specifically, vec will mean nvec in
the case of the XZ method and svec otherwise. The inverse of vec is denoted by
mat . We shall use lower case letters x and z to denote vecX and vecZ respectively,
and we shall use ∆x and ∆z interchangeably with vec ∆X and vec ∆Z, to be defined
shortly.

Let

A =

 ( vecA1)T

...
( vecAm)T

(2.7)
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and define

rp = b−Ax, Rd = C − Z − mat AT y,

and

Rc =

{
µI −XZ XZ method
µI − 1

2 (XZ + ZX) XZ + ZX method

}
(2.8)

with

rd = vecRd, rc = vecRc.

Let

G(x, y, z) =

−rd−rp
−rc

 .(2.9)

Note that G maps U to U in the case of the XZ method and V to V otherwise.
Application of one step of Newton’s method to G(x, y, z) = 0 gives the linear system 0 AT I

A 0 0
E 0 F

∆x
∆y
∆z

 =

 rdrp
rc

 .(2.10)

Here

E =

{
Z ⊗ I XZ method
Z ~ I XZ + ZX method

}
and

F =

{
I ⊗X XZ method
X ~ I XZ + ZX method

}
and I is the identity matrix of appropriate dimension (I ⊗ I for the XZ method and
I ~ I for the XZ+ZX method). We denote the Jacobian matrix on the left-hand side
of (2.10) by J.

Applying block Gauss elimination, (2.10) reduces to the system[ −F−1E AT

A 0

] [
∆x
∆y

]
=

[
rd − F−1rc

rp

]
.(2.11)

A second step of block Gauss elimination gives

M∆y = rp + AE−1(Frd − rc),(2.12)

∆x = −E−1(F(rd −AT∆y)− rc),(2.13)

and, from the dual feasibility equation,

∆z = rd −AT∆y,(2.14)
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where

M = AE−1FAT .(2.15)

We call M the Schur complement matrix. The main computational work is the for-
mation and factorization of M. The kth column of the matrix E−1FAT is{

nvec (XAkZ
−1) XZ method

svec (Gk) XZ + ZX method

}
,

where Gk is the solution of the Lyapunov equation (see Appendix)

ZGk +GkZ = XAk +AkX.(2.16)

Formation of M thus requires O(mn3+m2n2) work, involving a Cholesky factorization
of Z, in the case of the XZ method, and an eigenvalue factorization of Z, in the
case of the XZ+ZX method (see Appendix). Neglecting sparsity considerations, the
additional cost of the eigenvalue factorization is negligible in comparison to the other
operations required to form M.

It is clear that, as long as X � 0 and Z � 0, nonsingularity of the Jacobian
matrix J is equivalent to nonsingularity of the Schur complement M. In the case of
the XZ method, M is symmetric and positive definite. In the case of the XZ+ZX
method, M is not symmetric, but can be shown to be nonsingular if XZ + ZX � 0
[15]. An alternative condition guaranteeing the nonsingularity of M is given in [10].
Equation (2.12) is solved by using a Cholesky factorization of M in the case of the
XZ method and an LU factorization of M in the case of the XZ+ZX method.

For the XZ+ZX method, the multiplications by E−1 in (2.12) and (2.13) require
the solution of Lyapunov equations, using the eigenvalues of Z already computed to
form M.

Both methods are then described by the following iteration.
BASIC ITERATION.
1. Choose 0 ≤ σ < 1 and define

µ = σ
X • Z
n

.(2.17)

2. Determine ∆X, ∆y, ∆Z from (2.10), equivalently (2.12)–(2.14).
3. In the case of the XZ method, replace ∆X by 1

2 (∆X + ∆XT ).
4. Choose steplengths α, β and update the iterates by

X ← X + α ∆X,
y ← y + β ∆y,
Z ← Z + β ∆Z.

Rules for defining σ will be discussed later. A simple steplength rule is given by
choosing a parameter τ , 0 < τ < 1, and defining

α = min(1, τ α̂), α̂ = sup{ᾱ : X + ᾱ∆X � 0}(2.18)

and

β = min(1, τ β̂), β̂ = sup{β̄ : Z + β̄∆Z � 0}.(2.19)
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Note that, except in the case ∆X � 0, we have 0 < α̂ <∞ with

α̂−1 = λmax(−L−1∆XL−T ),

where λmax means the largest eigenvalue and L is the Cholesky factor of X, i.e.,
X = LLT .

Other methods can also be defined in the same framework; two of these are
discussed below. See [19] for a class of methods that includes the XZ+ZX method,
and [7, 15] for another class that includes all those discussed here except the XZ+ZX
method.

The X−1 method. Replace Rc in (2.9) by Rc = µX−1 − Z, so E = µX−1 ~X−1,
F = I ~ I. A similar method can be defined with Rc = µZ−1 −X. In fact,
the method given by [17] is based on a combination of these two steps.

The NT method. Use Rc = µX−1 −Z, E = W−1 ~W−1, F = I ~ I, where W =
X1/2(X1/2ZX1/2)−1/2X1/2. This form does not actually arise from applying
Newton’s method to (2.9). However, see [16] for a Newton interpretation of
this method.

As long as X � 0 and Z � 0, E−1F is symmetric and positive definite for both
these methods. However, in both cases, the function to which Newton’s method
is applied fails to exist at a solution. We call an algorithm a Newton method if
(∆X,∆y,∆Z) is derived by applying Newton’s method to a function that is well
defined for all X � 0, Z � 0. Under this definition, of the four variants defined so
far, only XZ+ZX is a Newton method for SDP.

In the special case of LP (i.e., a block-diagonal SDP with block sizes all one),
the XZ, XZ+ZX, and NT methods coincide, giving the XZ method for LP, which is
a Newton method.

In order to understand the asymptotic behavior of Newton’s method, it is impor-
tant to analyze the Jacobian at the solution itself. This is done in the next section.

3. The Jacobian at the solution. In this section we study the Jacobian of the
function G, appearing on the left-hand side of (2.10), under nondegeneracy assump-
tions. To do this, we use the notions of nondegeneracy that were introduced by the
authors in [3].

DEFINITION 1. Let (X, y, Z) solve (1.2), (1.3) with an orthogonal matrix Q sat-
isfying (1.9). Let X have rank r, with positive eigenvalues λ1, . . . , λr, and partition
Q = [Q1 Q2], where the columns of Q1 are eigenvectors corresponding to λ1, . . . , λr.
We say that (X, y, Z) satisfies the strict complementarity and primal and dual non-
degeneracy conditions if the following hold:

1. rank(Z) = n− r,
2. the matrices[

QT1 AkQ1 QT1 AkQ2

QT2 AkQ1 0

]
for k = 1, 2, . . . ,m(3.1)

are linearly independent in Sn, and
3. the matrices

QT1 AkQ1 for k = 1, 2, . . . ,m(3.2)

span the space Sr.
These conditions are well defined even if Q is not unique. The first requirement is
the strict complementarity condition. Conditions (3.1), (3.2) are respectively primal



PRIMAL-DUAL METHODS FOR SEMIDEFINITE PROGRAMMING 753

and dual nondegeneracy conditions under the assumption of strict complementarity.
They immediately imply the inequalities

r2 ≤ m ≤ r2 + r(n− r)(3.3)

(recalling the notation (1.1)). They also imply uniqueness of the primal and dual so-
lutions. Furthermore, the conditions are generic properties of SDPs, meaning roughly
that they hold with probability one for an optimal solution triple, given random data
with feasible solutions. For motivation of these conditions and further details, see [3].
The definitions are easily extended to the block-diagonal case, giving the usual LP
nondegeneracy conditions when all blocks have size one.

The strict complementarity condition rank(X) = r, rank(Z) = n − r implies,
using (1.10), that

λ1 ≥ · · · ≥ λr > λr+1 = · · · = λn = 0(3.4)

and

0 = ω1 = · · · = ωr < ωr+1 ≤ · · · ≤ ωn.(3.5)

Let Bk = QTAkQ. From (7.6), we have

svecBk = (QT ~QT ) svecAk.

Recall the definition (2.7), and define

B =

 ( svecB1)T

...
( svecBm)T

 ,(3.6)

so that

A(Q~Q) = B.

Each column of B corresponds to an index pair (i, j), identifying two columns
of Q, with 1 ≤ i ≤ j ≤ n. By choosing the ordering used by the svec operator
appropriately, we may write

B = [C1 C2 C3],(3.7)

where C1 contains r2 columns corresponding to 1 ≤ i ≤ j ≤ r, C2 contains r(n− r)
columns corresponding to 1 ≤ i ≤ r, r + 1 ≤ j ≤ n, and C3 consists of (n− r)2

columns corresponding to r + 1 ≤ i ≤ j ≤ n. The primal nondegeneracy condition
(3.1) holds exactly when the rows of [C1 C2] are linearly independent, i.e., [C1 C2]
has rank m. The dual nondegeneracy condition (3.2) holds exactly when C1 has rank

r2, i.e., the columns of C1 are linearly independent. Thus, the conditions (3.1) and

(3.2) together imply that it is possible to choose m − r2 columns from C2 so that,
together with all the columns of C1, they form a nonsingular m×m matrix. In other
words, we can choose an ordering for the columns of C2, and therefore of B, so that

B = [B1 B2] ,(3.8)

where B1 ∈ Rm×m is nonsingular.
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Theorem 3.1. Consider an SDP whose solution (X, y, Z) satisfies the strict
complementarity and primal and dual nondegeneracy conditions. Let J be the Jacobian
of the function G defining the XZ+ZX method, evaluated at (X, y, Z). Then J is
nonsingular.

Proof. We have

J =

 0 AT I
A 0 0
E 0 F

 ,
where E = Z ~ I and F = X ~ I. Let P = Q~Q, and let S = Diag(P, I,P), so that

STJS =

 0 BT I
B 0 0
Υ 0 Φ

 ,
with Φ = PTFP and Υ = PTEP. Using Lemma 7.2 (see Appendix) and (1.9), we
see that PTP = I, and Φ and Υ are diagonal with entries 1

2 (λi +λj) and 1
2 (ωi +ωj),

1 ≤ i ≤ j ≤ n, respectively. Notice that the diagonal entry of Φ corresponding to the
index pair (i, j) is zero if and only if r + 1 ≤ i ≤ j ≤ n (because of (3.4)), while the
diagonal entry of Υ corresponding to the pair (i, j) is zero if and only if 1 ≤ i ≤ j ≤ r
(see (3.5)).

Using the partitioning of B in (3.8), we have

STJS =


0 0 BT

1 I 0
0 0 BT

2 0 I
B1 B2 0 0 0
Υ1 0 0 Φ1 0
0 Υ2 0 0 Φ2

 ,(3.9)

where Υ = Diag(Υ1,Υ2) and Φ = Diag(Φ1,Φ2). We have Φ1 � 0, since none of the
columns of C3 are included in B1, and Υ2 � 0, since all of the columns of C1 are
included in B1.

Interchanging the first and third rows and the second and last columns of (3.9),
we obtain


B1 0 0 0 B2

0 I BT
2 0 0

0 0 BT
1 I 0

Υ1 0 0 Φ1 0
0 Φ2 0 0 Υ2

 .
We shall demonstrate the nonsingularity of this matrix using block Gauss elimination.
First, subtract Υ1B

−1
1 times the first block row from the fourth block row to eliminate

Υ1 from the (4,1) position. This does not otherwise change the lower triangle or the
diagonal blocks, but only introduces −Υ1B

−1
1 B2 into the (4,5) position. Second,

subtract Φ2 times the second block row from the fifth row, eliminating Φ2 from
the (5,2) position; this introduces −Φ2B

T
2 into the (5,3) position. This (5,3) block is

then eliminated by adding Φ2B
T
2 B−T1 times the third row to the fifth row, introducing
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Φ2B
T
2 B−T1 into the (5,4) position, giving

B1 0 0 0 B2

0 I BT
2 0 0

0 0 BT
1 I 0

0 0 0 Φ1 −Υ1H
0 0 0 Φ2H

T Υ2

 ,

where H = B−1
1 B2. In order to show that this matrix is nonsingular we need only

show that the trailing 2 × 2 block is nonsingular, or equivalently that its positive row
scaling [

I −Φ−1
1 Υ1H

Υ−1
2 Φ2H

T I

]
is nonsingular. A final step of block Gauss elimination yields a block upper triangular
matrix with last diagonal block given by

I + Υ−1
2 Φ2H

TΦ−1
1 Υ1H.

This matrix is nonsingular, since it is of the form I +N1N2 with N1 � 0 and N2 � 0.
(The product of two symmetric and positive semidefinite matrices, though nonsym-
metric, has real nonnegative eigenvalues.)

Corollary 3.2. Consider an SDP whose solution (X,y,Z) satisfies the strict
complementarity and primal and dual nondegeneracy conditions. Suppose that the
XZ+ZX method uses σ = 0 and α = β = 1 in the Basic Iteration. Then, there
exists ε > 0 such that, if the iteration is started at (X0, y0, Z0), with ||(X0, y0, Z0) −
(X, y, Z)|| < ε, the iterates converge Q-quadratically to (X, y, Z).

The proof of Corollary 3.2 is immediate from the standard convergence theory
for Newton’s method. It is clear that Corollary 3.2 holds also for less restrictive as-
sumptions on σ, α, and β. See [20] for relevant results for LP. There is no requirement
that (X0, y0, Z0) lie in a horn-shaped neighborhood of the central path, or even in
the feasible region. Note that the assumptions of Corollary 3.2 do not guarantee
positive definite iterates. These are not required to make (2.10) well defined, though
the equivalence of (2.10) with (2.12) to (2.14) does not hold if X or Z is singular. In
practice, conditions (2.18) and (2.19) ensure positive definite iterates.

A result like Theorem 3.1 does not hold for any of the other methods discussed so
far. As already noted, the function to which Newton’s method is applied is, in the case
of the X−1 and NT methods, not defined at an optimal point. For the XZ method,
the function G is defined at the solution, but it can be shown that the Jacobian
J is always singular there. More importantly, bearing in mind the symmetrization
step, an example can be constructed where J has a null vector (∆X,∆y,∆Z) with
∆X + ∆XT 6= 0.

It is well known that a result like Theorem 3.1 holds for the XZ method for LP,
using LP nondegeneracy assumptions.

Nondegeneracy assumptions are not required to obtain superlinear convergence
results. This has been known for some years for LP [18] and is the subject of active
current research for SDPs. However, such results require that the iterates of a method
stay close to the central path. Our point here is that classical Newton theory applies
to the XZ+ZX method, under nondegeneracy assumptions, in SDPs just as in LP.
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4. Conditioning of the Schur complement matrix. In this section, we study
the conditioning of the Schur complement matrix M, introduced in section 2, on the
central path. It is important to note that, when started on the central path, all the
methods discussed so far generate the same first iterate. On the central path, X and
Z commute. Therefore,

E−1F =
1

µ
X ~X

in all cases except the XZ method for which we have E−1F = 1
µX ⊗X. In both cases

the Schur complement matrix M = AE−1FAT is the same.
We now analyze the condition number of M on the central path, as µ → 0. We

begin by considering its rank in the limit.
Theorem 4.1. Assume that (Xµ, yµ, Zµ) lies on the central path of an SDP

whose solution (X, y, Z) = limµ→0(Xµ, yµ, Zµ) satisfies the dual nondegeneracy con-
dition (3.2), with r = rank(X). Let Mµ be the Schur complement matrix defined at
(Xµ, yµ, Zµ). Then

lim
µ→0

(µMµ)

exists and has rank r2.
Proof. Clearly,

µMµ → N = A(X ~X)AT ,

the matrix whose (l, k) element is tr (XAlXAk). Let Q and λi satisfy (1.9), and write
Λ1 = Diag(λ1, . . . , λr) � 0, with corresponding eigenvectors collected in Q1, so that

X = Q1Λ1Q
T
1 . Let C1 be the m × r2 matrix introduced in (3.7), and let D1 be the

r2 × r2 diagonal matrix

D1 = Diag(λiλj), 1 ≤ i ≤ j ≤ r,
using consistent orderings for C1 and D1. Then

N = C1D1C
T
1 ,

since the (l, k) element of the right-hand side is

tr (Λ1Q
T
1 AlQ1Λ1Q

T
1 AkQ1) = tr (XAlXAk).

Since, by the dual nondegeneracy assumption, C1 has linearly independent columns,
and since D1 � 0, this completes the proof of the theorem.

Recall that the condition number of a symmetric positive definite matrix is
κmax/κmin, where κmax and κmin are respectively its largest and smallest eigenval-
ues.

Theorem 4.2. Suppose that the assumptions of Theorem 4.1 hold. Then, if

m > r2 > 0, the condition number of Mµ (equivalently of µMµ) is bounded below by
a positive constant times 1/µ.

Proof. Let Qµ, λµi satisfy (1.6), and let Bµ,Cµ be the matrices introduced in
section 3, evaluated at (Xµ, yµ, Zµ). Using Lemma 7.2 (see Appendix), we have

µMµ = A(Xµ ~Xµ)AT = BµDµ(Bµ)T ,(4.1)
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where Dµ is the diagonal n2 × n2 matrix

Dµ = Diag(λµi λ
µ
j ), 1 ≤ i ≤ j ≤ n.(4.2)

The primal solution rank r defines a splitting

Dµ = Diag(Dµ
1 ,D

µ
2 ,D

µ
3 )

consistent with (3.7), so that

µMµ = Cµ
1 Dµ

1 (Cµ
1 )T + Cµ

2 Dµ
2 (Cµ

2 )T + Cµ
3 Dµ

3 (Cµ
3 )T .(4.3)

Here the entries of the diagonal matrices Dµ
1 , Dµ

2 , and Dµ
3 are λµi λ

µ
j , with the indices

1 ≤ i ≤ j ≤ r for Dµ
1 , 1 ≤ i ≤ r < j ≤ n for Dµ

2 , and r + 1 ≤ i ≤ j ≤ n for
Dµ

3 . Although Qµ and Cµ do not generally converge as µ → 0, Theorem 4.1 shows

that µMµ → N = C1D1C
T
1 , with rank r2. By assumption, m > r2 > 0, so the

largest eigenvalue of N is positive and the smallest is zero. The norms of the second
and third terms in (4.3) are O(µ), so the largest and smallest eigenvalues of µMµ

are, respectively, bounded away from zero and O(µ). (Here we use the fact that
eigenvalues of a symmetric matrix are Lipschitz continuous functions of the matrix
entries.)

Theorem 4.2 is easily extended to the block-diagonal case. When all block sizes
are one, the condition on m in its hypothesis cannot hold under the nondegeneracy as-
sumptions. Indeed, it is well known that for LP, under assumptions of nondegeneracy
and strict complementarity, the condition number of the Schur complement matrix is
bounded independent of µ.

5. Stability. We have seen in the previous section that, for nondegenerate SDPs,
the condition number of the Schur complement matrix, evaluated on the central path,
is bounded below by a positive constant times 1/µ (ruling out the exceptional cases

r2 = m and r = 0). Consequently, we expect that as µ→ 0, the computation of ∆y in
(2.12) will become increasingly less accurate. Indeed, in our original implementations
we observed numerical instability leading to significant loss of primal feasibility near
a solution. Recently, however, Todd, Toh, and Tütüncü [16] found that high accuracy
is achievable. The main issue is the choice of formulae for ∆y and ∆X. Several
mathematically equivalent choices are possible, but these have quite different stability
properties.

Formulae for ∆y and ∆X are given in (2.12) and (2.13). Both include the term
Frd − rc. For the XZ+ZX method, this term (in matrix form) is

1

2

(
(X(C − Z − mat AT y) + (C − Z − mat AT y)X)− (2µI −XZ − ZX)

)
,

which can be rewritten as

1

2

(
(X(C − mat AT y) + (C − mat AT y)X)− 2µI

)
.

However, using this simplification to modify (2.12) and (2.13) leads to instability and
loss of primal feasibility. It is much better to implement (2.12) and (2.13) directly.
This is done in the computational experiments reported in section 7.
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The same issue applies to the XZ method. However, direct implementation of
(2.12) and (2.13) does not give good results for the XZ method. Instead,1 we use the
fact that E−1F is symmetric positive definite to write

E−1F = Z−1 ⊗X = GTG, G = M−1 ⊗ LT ,

where L and M are respectively Cholesky factors of X and Z, i.e.,

X = LLT , Z = MMT .

Noting that the first block in the right-hand side of (2.11) is

u = vecU = vec (C − µX−1 − mat AT y),

we see that (2.11) is equivalent to[
−I ÃT

Ã 0

] [
∆̃x
∆y

]
=

[
ũ
rp

]
,(5.1)

∆̃x = G−T∆x = vec (L−1 ∆XM) = vec ∆̃X,

ũ = Gu = vec (LTUM−T ) = vec Ũ ,

and

Ã = AGT =

 ( vecLTA1M
−T )T

...
( vecLTAmM

−T )T

 .(5.2)

The solution is given by

(ÃÃT )∆y = rp + Ãũ(5.3)

(which may be solved with a Cholesky factorization) and

∆X = L∆̃XM−1 = L( mat ÃT∆y − Ũ)M−1.(5.4)

This last equation can be written in many ways, three of which are

∆X = L
(
LT ( mat AT∆y)M−T − LTUM−T )M−1(5.5)

= LLT ( mat AT∆y)M−TM−1 − LLTUM−TM−1(5.6)

= LLT
(
( mat AT∆y)− U)M−TM−1.(5.7)

Of these four mathematically equivalent formulae, (5.4) and (5.5) give the highest
accuracy, with smallest loss of primal feasibility. We used (5.4) in our computational
experiments, with ∆y defined by (5.3).

For the NT method, E−1F is also symmetric positive definite, so similar consid-
erations apply; see [16].

1The discussion here is motivated by [16].
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6. The Q method. In this section we change direction, deriving an alternative
primal-dual interior-point method that generates iterates (X, y, Z) with the property
that X and Z commute, i.e., XZ = ZX. This is motivated by the fact that this
property holds for all points on the central path. Instead of treating the variables
X and Z directly, we introduce as variables the eigenvalues of X and Z and their
common set of eigenvectors. In other words, the variables consist of an orthogonal
matrix Q, diagonal matrices Λ and Ω, and a vector y ∈ Rn that must satisfy

QΩQT +
m∑
k=1

ykAk = C,

Ak • (QΛQT ) = bk, k = 1, . . . ,m,(6.1)

ΛΩ = µI.

This defines a map from On × R2n+m to Rn2+n+m, where On is the Lie group of
orthogonal matrices with determinant one, whose dimension is n(n−1)/2. (Since the
signs of eigenvectors are arbitrary, it is not a restriction to impose detQ = 1.) The
price paid for the diagonalization is the nonlinear appearance of the variable Q in the
feasibility equations.

Let Kn denote the space of n × n skew-symmetric matrices, and consider the
exponential map from Kn to On defined by

exp(S) = I + S +
1

2
S2 + · · · .

This map is smooth, onto, and, in a neighborhood of 0, also one-to-one. Borrowing a
technique used in [14], we derive a form of Newton’s method based on parameterizing
On near a given point Q by Q exp(S). Let kvec be an isometry from Kn to Rn(n−1)/2,
stacking the upper triangular entries of a skew-symmetric matrix in a vector, with a
factor of

√
2 to preserve the inner product. Let us use the convention s = kvec (S),

Λ = Diag(λ), and Ω = Diag(ω). Define

GQ(λ, y, ω, s) =

 vec (C −Q exp(S)Ω exp(−S)QT )−AT y
b−A vec (Q exp(S)Λ exp(−S)QT )

ΛΩe− µe

 .(6.2)

The function GQ maps Rn2+n+m to itself. Note that the third component of GQ has
the form familiar from LP.

Given an iterate (X, y, Z) = (QΛQT , y,QΩQT ), we obtain a new iterate by ap-
plying Newton’s method to the equation GQ = 0 at the point (λ, y, ω, 0). The Newton
step (∆λ,∆y,∆ω, s) is obtained by replacing exp(S) by I +S and discarding second-

order terms. The resulting (n2 + n+m)× (n2 + n+m) linear system is

∆Ω + SΩ− ΩS +
m∑
k=1

∆ykBk = H − Ω,(6.3)

Bk • (∆Λ + SΛ− ΛS) = bk −Bk • Λ, k = 1, ...,m,(6.4)

Λ ∆Ω + Ω ∆Λ = µI − ΛΩ,(6.5)

where Bk = QTAkQ and H = QTCQ−∑m
k=1 ykBk.
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The basic iteration for the Q method is therefore
1. Choose 0 ≤ σ < 1 and define

µ = σ
λTω

n
.

2. Determine (∆λ,∆y,∆ω, s) from (6.3) to (6.5).
3. Choose steplengths α, β, γ and update the iterates by

Λ ← Λ + α ∆Λ,
y ← y + β ∆y,
Ω ← Ω + β ∆Ω,
Q ← Q(I + 1

2γS)(I − 1
2γS)−1.

A simple steplength rule is α = min(1, τ α̂), β = min(1, τ β̂), and γ =
√
αβ, where

α̂ and β̂ are steps to the boundary of the positive orthant. The multiplicative fac-
tor updating Q is the Cayley transform, an easily computed orthogonal matrix that
approximates the matrix exponential to second order.

The equations defining the Q method can be rewritten as follows. First note that
(6.4) can be rewritten as

Bk •∆Λ + tr ((ΛBk −BkΛ)S) = bk −Bk • Λ

and write

v =

 b1 −B1 • Λ
...

bm −Bm • Λ

 .
Let diag(Bk) be the vector consisting of the n diagonal entries of Bk and offdiag(Bk)
be the vector consisting of the n(n− 1)/2 entries of the upper triangle of Bk, ordered
consistently with the ordering chosen for the kvec operator. Define

L = [ diag(B1) · · · diag(Bm) ]
T
,

R = [ offdiag(B1) · · · offdiag(Bm) ]
T
.

Let

D = Diag(λi − λj), E = Diag(ωi − ωj)

be diagonal matrices of size n(n − 1)/2 (corresponding to 1 ≤ i < j ≤ n), whose
orderings are also consistent with that of the kvec operator. Then, writing the
diagonal and off-diagonal parts of (6.3) separately, we get the linear system

0 0 LT I
0 E RT 0
L RD 0 0
Ω 0 0 Λ




∆λ
s

∆y
∆ω

 =


diag(H − Ω)
offdiag(H)

v
µe− ΛΩe

 .(6.6)

We denote the matrix on the left-hand side of (6.6) by JQ.
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Let (X, y, Z) be a solution of (1.2), (1.3) satisfying (3.4), (3.5). The matrix Q
simultaneously diagonalizing X and Z is unique (up to signs of its columns) if and
only if

λ1 > · · · > λr > 0 and 0 < ωr+1 < · · · < ωn.(6.7)

Theorem 6.1. Let (X, y, Z) = (QΛQT , y,QΩQT ) be a solution of (1.2), (1.3)
satisfying the strict complementarity and primal and dual nondegeneracy conditions,
and also condition (6.7). Then the matrix JQ, evaluated at the solution, is nonsingu-
lar.

Proof. First note that the assumptions on the eigenvalues imply that the element
of the diagonal matrix D corresponding to the index pair (i, j) is zero if and only if
r+ 1 ≤ i < j ≤ n, while the element of the diagonal matrix E corresponding to (i, j)
is zero if and only if 1 ≤ i < j ≤ r. Let us rewrite JQ as

0 0 0 LT1 I 0
0 0 0 LT2 0 I
0 0 E RT 0 0

L1 L2 RD 0 0 0
0 0 0 0 Λ1 0
0 Ω2 0 0 0 0

 ,

where Λ1 � 0 and Ω2 � 0. As in the proof of Theorem 3.1, the nondegeneracy
assumptions permit us to collect all r columns of L1 and m−r columns of R together
in a nonsingular m × m matrix B1. We collect the remaining n(n − 1)/2 − m + r
columns of R in a matrix R2, and partition D = Diag(D1, D2) and E = Diag(E1, E2)
accordingly. Observe that D1 � 0 since the columns of B1 correspond to index pairs
(i, j) with λi > λj . Likewise, −E2 � 0 since all columns corresponding to index pairs
(i, j) with ωi = ωj = 0 are contained in B1.

Let D̃ = Diag(I,D1) and Ẽ = Diag(0, E1). Permuting the rows and columns, JQ
becomes 

Ẽ 0 0 BT
1 Ĩ 0

0 0 0 LT2 0 I
0 0 E2 RT

2 0 0

B1D̃ L2 R2D2 0 0 0
0 0 0 0 Λ1 0
0 Ω2 0 0 0 0

 ,

where Ĩ is an m by r matrix containing r rows of the r by r identity matrix and m−r
zero rows. Interchanging the first and fourth rows and the second and last columns,
this becomes 

B1D̃ 0 R2D2 0 0 L2

0 I 0 LT2 0 0
0 0 E2 RT

2 0 0

Ẽ 0 0 BT
1 Ĩ 0

0 0 0 0 Λ1 0
0 0 0 0 0 Ω2

 .

Performing Gauss block elimination on this matrix we see that its nonsingularity is
equivalent to the nonsingularity of

BT
1 + ẼD̃−1B−1

1 R2D2E
−1
2 RT

2 .
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Multiplying on the left by B−T1 we obtain the matrix

I + (B−T1 ẼD̃−1B−1
1 )(R2D2E

−1
2 RT

2 ).

This is nonsingular since it is of the form I +N1N2 with N1, N2 symmetric negative
semidefinite.

Corollary 6.2. Consider an SDP whose solution satisfies the strict comple-
mentarity and primal and dual nondegeneracy conditions, and also condition (6.7).
Suppose that the Q method uses σ = 0 and α = β = γ = 1. Then, if the method is
started with λ, ω, y, and Q initialized sufficiently close to their values at the solution,
the iterates converge Q-quadratically to the solution.

The proof of Corollary 6.2 is more technical than that of Corollary 3.2 and is
omitted. It is necessary to establish that quadratic convergence is not impeded by
either (a) the use of the Cayley transform to approximate the matrix exponential or
(b) the dependence of the definition of GQ on Q.

As with the other methods, we see how to efficiently implement the Q method by
performing block Gauss elimination directly on JQ without partitioning the blocks.
The first step yields−Λ−1Ω 0 LT

0 D−1E RT

L R 0

∆λ
s̃

∆y

 =

diag(H − µΛ−1)
offdiag(H)

v

 ,
where S̃ = kvec s̃ is the symmetric matrix defined by

S̃ij = (λi − λj)Sij .
One more step of block elimination then gives the Schur complement

MQ = [ L R ]

[
ΛΩ−1 0

0 −DE−1

] [
LT

RT

]
.(6.8)

As in LP, the center factor of the Schur complement is diagonal, with entries

λi
ωi
, 1 ≤ i ≤ n, and

λi − λj
ωj − ωi , 1 ≤ i < j ≤ n.

Of course, the L and R blocks are not independent of the iteration count.
The Q method does not require computing eigenvalues. The variables Q, λ, and

ω are all updated using rational operations. This is in contrast with the XZ+ZX
method which requires the computation of eigenvalues in two places: the formation
of the Schur complement matrix M (to solve the Lyapunov equations) and in the
step-length computation (to find the step to the boundary). Finally, note that the
Schur complement matrix is symmetric for the Q method, but not for the XZ+ZX
method.

When evaluated on the central path, the Schur complement matrix Mµ
Q for the Q

method is equal to the Schur complement matrix Mµ for the XZ and XZ+ZX methods,
assuming that (6.7) holds. To see this, let Lµ, Rµ, Dµ, Eµ denote the matrices
L, R, D, E evaluated on the central path. We have Λµ(Ωµ)−1 = Diag(λµi /ω

µ
i ) =

1
µDiag((λµi )2) and

−Dµ(Eµ)−1 = Diag

(
λµi − λµj
ωµj − ωµi

)
=

1

µ
Diag(λµi λ

µ
j ).
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Thus,

MQ =
1

µ
BµDµ(Bµ)T = M,

using (4.1) and (4.2).
Although the Q method has some attractive features, it is, at present, not a

practical alternative to the other algorithms. When initialized far from the solu-
tion, convergence is generally not obtained. However, the quadratic local convergence
established here is observed in practice.

7. Computational results. In this section we report on the results of some
extensive numerical experiments. We start by discussing some important implemen-
tation details.

Mehrotra’s predictor-corrector (PC) rule is a well-known technique in LP [18]. It
can easily be extended to the XZ and XZ+ZX methods, as follows.

XZ and XZ+ZX methods with Mehrotra predictor-corrector rule.
1. Determine ∆X, ∆y, ∆Z from (2.10) using µ = 0 in (2.8), and symmetrize

∆X in the case of the XZ method.
2. Choose steplengths α, β using (2.18)–(2.19), and define

σ =

(
(X + α∆X) • (Z + β∆Z)

X • Z
)3

,(7.1)

µ = σ
X • Z
n

.

3. Redetermine ∆X, ∆y, ∆Z from (2.10), using

Rc =

{
µI − (XZ + ∆X ∆Z) XZ method
µI − 1

2 (XZ + ZX + ∆X ∆Z + ∆Z ∆X) XZ + ZX method

}
,

symmetrize ∆X in the case of the XZ method, and update the iterates by

X ← X + α ∆X,
y ← y + β ∆y,
Z ← Z + β ∆Z,

with α, β given by (2.18) and (2.19).
See [16] for a definition of the PC version of the NT method. (Our experiments

use (7.1) in the implementation of all the methods, although [16] uses the exponent 2
instead of 3 in (7.1).)

Computational results are presented in Tables 1 through 4. Tables 1, 2, and 3
report results for randomly generated problems, with m = n. The matrices Ak, k =
1, . . . ,m were symmetric with entries uniformly distributed in the interval [−1, 1]. The
vector b and the matrix C were chosen to ensure that Assumption 1 was satisfied.
More precisely, random positive definite symmetric matrices X̃ and Z̃ and a random
vector ỹ were generated, and b was defined by bk = Ak • X̃, k = 1, . . . ,m, while C
was set to Z̃ +

∑m
k=1 ỹkAk. All methods were initialized with the infeasible starting

point (X0, y0, Z0) = (I, 0, I). Table 1 shows results for the XZ+ZX, XZ, and NT basic
iteration, using σ = 0.25 in (2.17), with various choices for the steplength parameter
τ in (2.18), (2.19). We also implemented the X−1 method but found it required many
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Table 1
(a) Number of iterations to reduce gap by 1012 averaged over 100 randomly generated problems.

Basic iteration with σ = 0.25; starting infeasible; n = 20, m = 20; S: short step failure (not included
in average); E: exceeded limit failure (not included in average).

Method τ = 0.9 τ = 0.99 τ = 0.999
XZ + ZX 21.6 21.2 21.2

XZ 21.8 22.1 23.7 (S:11%, E:2%)
NT 21.6 22.0 29.8 (E:18%)

(b) Log norm infeasibility averaged over same data.

Method τ = 0.9 τ = 0.99 τ = 0.999
XZ + ZX −12.6 −12.6 −12.6

XZ −11.0 −10.9 −10.9
NT −10.8 −10.7 −10.5

Table 2
(a) Number of iterations to reduce gap by 1012 averaged over 100 randomly generated problems.

Mehrotra predictor-corrector rule; starting infeasible; n = 20, m = 20; S: short step failure (not
included in average); E: exceeded limit failure (not included in average).

Method τ = 0.9 τ = 0.99 τ = 0.999
XZ + ZX 14.0 9.4 8.5

XZ 15.3 14.2 15.7 (S:63%, E:5%)
NT 14.5 22.8 (E:100%)

(b) Log norm infeasibility averaged over same data.

Method τ = 0.9 τ = 0.99 τ = 0.999
XZ + ZX −10.7 −12.0 −12.2

XZ −8.7 −8.8 −9.4
NT −9.1 −8.3

Table 3
(a) Number of iterations to reduce gap by 1012 averaged over 100 randomly generated problems.

Mehrotra predictor-corrector rule; starting infeasible; S: short step failure (not included in average).

Method n = m = 20 n = m = 40 n = m = 80
XZ + ZX, τ = 0.99 9.4 9.9 10.0
XZ + ZX, τ = 0.999 8.6 9.2 (S:3%) 9.5 (S:6%)

(b) Log norm infeasibility averaged over same data.

Method n = m = 20 n = m = 40 n = m = 80
XZ + ZX, τ = 0.99 −12.1 −11.2 −10.4
XZ + ZX, τ = 0.999 −12.3 −11.4 −10.5

more iterations than the others with the same parameter choices. Table 2 shows
results for the PC variants. Part (a) of both tables shows the number of iterations
required to reduce the quantity X •Z by a factor of 1012, averaged over 100 problems.
Part (b) shows the final value of

log10 (||rp||+ ||Rd||) ,
averaged over the same data. A run was terminated reporting success when X • Z
was reduced by the desired factor of 1012 and reporting failure if (i) the primal or
dual steplength (α or β) dropped below 10−4 (indicated by the notation S in part (a)
of the table), (ii) the number of iterations exceeded the maximum value 50 (indicated
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by E in the table), or (iii) a Cholesky factorization failed (caused by rounding errors,
impossible in exact arithmetic, and indicated by R in the table). Failures are not
included in the average statistics. All experiments were conducted in Matlab, using
IEEE double-precision arithmetic.

Let us first consider the results shown in Table 1 for the Basic Iteration without
the PC rule. For τ = 0.9, all three methods show essentially the same number of
iterations. The XZ+ZX method achieves the highest accuracy (in terms of feasibility).
More aggressive choices of the step-length parameter have little effect on the XZ+ZX
method but cause difficulties for the XZ and NT methods. Choosing τ = 0.999 causes
the XZ and NT methods to fail in many cases. In the case of the XZ method, this
was usually because the primal or dual steplength dropped below 10−4, but for the
NT method, failure generally occurred because the desired reduction in the duality
gap was not achieved in 50 iterations.

Table 2 shows the same experiment using the PC rule. With τ = 0.9, the PC
rule greatly reduces the number of iterations, though with some loss of feasibility for
the XZ and NT methods. More aggressive choices of τ gave a significantly reduced
number of iterations (without loss of feasibility) for the XZ+ZX method, but led to
many failures for the XZ and NT algorithms.

In Table 3, we show results for the XZ+ZX method when the problem size n
is varied, using the PC rule and two choices of τ . We see an iteration count which
is essentially constant as n increases, with occasional failures (with steps too short)
for τ = 0.999. In these cases, we found that success could generally be achieved
by restarting with X0 and Z0 set to a larger multiple of the identity (alternatively,
reducing τ). Note some loss of feasibility (due to rounding errors) for larger n. Primal
feasibility can be regained by projecting onto the set {x : Ax = b}, but this generally
fails to give a more accurate solution, as the duality gap usually increases.

For some classes of problem, the XZ and NT methods can be implemented very
efficiently. This is the case, for example, for SDPs with only diagonal constraints on
X (equivalently, off-diagonal entries in Z fixed). For such an SDP, we have m = n
and Ak = eke

T
k , k = 1, ...,m, where ek is the kth column of the identity matrix.

Consequently, for the XZ method we have Mij = eTi Xeje
T
j Z
−1ei, i.e. M is the

Hadamard product of X and Z−1 [6], reducing the cost of forming M from O(n4)
(the general case when m = n) to O(n3). It is not known how to implement the
XZ+ZX method efficiently in this case. A similar observation applies to the SDP
that computes the Lovász θ function for a graph [5], as long as the number of edges
is not too large. In this case n is the number of vertices in the graph and m − 1
is the number of edges, with b = e1, −C the matrix of all ones, A1 = I, and, for
k = 2, . . . ,m, Ak = eie

T
j + eje

T
i , where the (k− 1)th edge of the graph is from vertex

i to vertex j.

Table 4 shows results comparing the XZ+ZX, XZ, and NT methods on the θ func-
tion for randomly generated graphs, with edge density 50%, using the general-purpose
implementations. We set n = 20, so the expected value of m is 1

4n(n−1)+1 = 96. For
these runs, we used the initial feasible point (X0, y0, Z0) = ((1/n)I,−2ne1, 2nI +C).
Using an infeasible initial point did not significantly change the results. The XZ
and NT methods often had difficulty reducing the duality gap by the desired factor,
even with τ = 0.9, because rounding errors caused a Cholesky factorization to fail.
This was usually the Cholesky factorization of M = ÃÃT (see (2.15) and (5.3)),
which is positive definite in exact arithmetic but may be numerically indefinite. Since
the Schur complement for the XZ+ZX method is nonsymmetric, it is factored using
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Table 4
(a) Lovasz θ function: Number of iterations to reduce gap by 1012 averaged over 100 randomly

generated problems. Mehrotra predictor-corrector rule; starting infeasible; n = 20, edge density 0.5
(m ≈ 96); S: short step failure (not included in average); E: exceeded limit failure (not included in
average); R: rounding failure (not included in average).

Method τ = 0.9 τ = 0.99 τ = 0.999
XZ + ZX 15.2 11.0 (S:1%) 10.4 (S:1%)

XZ 15.5 (R:22%) 17.0 (E:15%, R:22%) 15.0 (S:68%, E:28%, R:3%)
NT 15.6 (R:25%) 21.3 (E:15%, R:22%) (S:3%, E:97%)

(b) Log norm infeasibility averaged over same data.

Method τ = 0.9 τ = 0.99 τ = 0.999
XZ + ZX −13.8 −13.7 −13.6

XZ −12.6 −11.4 −12.4
NT −12.5 −10.9

an LU factorization, which fails only if the matrix is numerically singular, i.e., the
factorization generates a zero pivot.

We also implemented the Q method and observed that it has essentially the same
rapid local convergence and high accuracy properties as the XZ+ZX method, although
when initialized far from the solution it generally fails to converge.

We conclude that the XZ+ZX PC method is the most efficient in terms of number
of iterations, most accurate in terms of feasibility, and most robust with respect to
its ability to step close to the boundary.

Appendix: Symmetric Kronecker products. Consider the linear operator
on Rn×n defined by the map

K 7→ NKMT ,(7.2)

where M,N ∈ Rn×n. It is standard to represent this linear operator by the Kronecker
product

M ⊗N =

 M11N · · · M1nN
...

...
Mn1N · · · MnnN

 ,
where nvec maps Rn×n to Rn2

, stacking the columns of a matrix in a vector, since
then

(M ⊗N) nvec (K) = nvec (NKMT ).(7.3)

Other Kronecker product identities include

(M ⊗N)−1 = M−1 ⊗N−1 and (M ⊗N)(K ⊗ L) = MK ⊗NL.(7.4)

Now consider the linear operator on Sn defined by the map

K 7→ 1

2
(NKMT +MKNT ),(7.5)

where M,N ∈ Rn×n. To represent this map as a matrix, define M~N by the identity

(M ~N) svec (K) = svec

(
1

2
(NKMT +MKNT )

)
,(7.6)
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where svec maps Sn to Rn2

by

svec (K) =
[
K11,

√
2K12, . . . ,

√
2K1n,K22, . . . ,

√
2K2n, . . . ,Knn

]T
.(7.7)

Note that

K • L = svec (K)T svec (L).

Of course, the ordering used in (7.7) is arbitrary: the important point is that each
element of svec (K) is associated with an index pair (i, j), with i ≤ j. The ordering
chosen for svec dictates a corresponding ordering for ~.

We call the matrix M ~N a symmetric Kronecker product. Note the identity

M ~N = N ~M.(7.8)

Furthermore (M ~M)−1 = M−1 ~M−1, but (M ~N)−1 6= M−1 ~N−1, in general.
We need the following lemmas whose proofs are straightforward.
Lemma 7.1. Let V ∈ Rn×n and let vi, 1 ≤ i ≤ n denote the columns of V . The

(i, j)th column of V ~ V , 1 ≤ i ≤ j ≤ n is the vector{
svec (viv

T
i ) if i = j,

1√
2

svec
(
viv

T
j + vjv

T
i

)
if i < j.

Lemma 7.2. Let M , N be commuting symmetric matrices, and let α1, . . . , αn,
β1, . . . , βn denote their eigenvalues with v1, . . . , vn a common basis of orthonormal
eigenvectors. The n(n+ 1)/2 eigenvalues of M ~N are given by

1

2
(αiβj + βiαj), 1 ≤ i ≤ j ≤ n,

with the corresponding set of orthonormal eigenvectors{
svec (viv

T
i ) if i = j,

1√
2

svec (viv
T
j + vjv

T
i ) if i < j.

In other words, if V = [v1 · · · vn], then V ~ V is an orthogonal matrix of size n2× n2

which diagonalizes M~N . The standard algorithm for solving the Lyapunov equation
MXNT +NXMT = B (when M and N commute) immediately follows: the solution
is V CV T , where C is found by computing V TBV and dividing its entries by the
quantities (αiβj + βiαj) componentwise.
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