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OPTIMIZING MATRIX STABILITY

J. V. BURKE, A. S. LEWIS, AND M. L. OVERTON

(Communicated by Jonathan M. Borwein)

Abstract. Given an affine subspace of square matrices, we consider the prob-
lem of minimizing the spectral abscissa (the largest real part of an eigenvalue).
We give an example whose optimal solution has Jordan form consisting of a
single Jordan block, and we show, using nonlipschitz variational analysis, that
this behaviour persists under arbitrary small perturbations to the example.
Thus although matrices with nontrivial Jordan structure are rare in the space
of all matrices, they appear naturally in spectral abscissa minimization.

1. Introduction

The spectral abscissa of a square matrix is the largest of the real parts of its eigen-
values. Our interest here is in minimizing the spectral abscissa of a parametrized
matrix.

Its intrinsic mathematical interest aside, this problem is fundamental in control
theory, where the spectral abscissa of a matrix A determines the stability of the
dynamical system u′ = Au. In practice, considerations of transient behaviour and
the effects of forcing terms or nonlinearity may complicate stability questions ([5]
gives some interesting infinite-dimensional illustrations, for example). Nonetheless,
understanding the asymptotic behaviour of the pure, homogeneous linear model is
crucial.

Consider for instance the damped linear oscillator equation

w′′ + µw′ + w = 0,

where µ is a real parameter. By writing

u = (w w′)T

we obtain the system

u′ =
(

0 1
−1 −µ

)
u.
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The spectral abscissa of the defining matrix is minimized when µ = 2, and the
optimal matrix has Jordan form(

1 0
1 1

)(
0 1
−1 −2

)(
1 0
1 1

)−1

=
(
−1 1
0 −1

)
.

The appearance of a nontrivial Jordan block is at first sight a little surprising,
since such matrices all lie in a manifold of smaller dimension than that of the
underlying space. Simple computational experiments suggest this is not an isolated
phenomenon but happens quite commonly: minimizing the spectral abscissa over
an affine manifold of matrices seems to encourage the appearance of matrices with
nontrivial (and hence nongeneric) Jordan structure. Our aim in this paper is to
make this observation more precise.

Just as the stability of continuous-time dynamical systems is closely related to
the spectral abscissa, the discrete-time case corresponds to the spectral radius of a
square matrix (the largest of the moduli of its eigenvalues). Our discussion of the
spectral abscissa here has a complete analogue for the spectral radius, which we do
not pursue.

We begin by presenting a particular example of a spectral abscissa minimization
problem whose solution has a large Jordan block. Specifically, we present an (n−1)-
dimensional affine subspace of n × n matrices on which the spectral abscissa is
uniquely minimized at a matrix consisting of a single Jordan block: our proof is
direct and classical.

On a general affine subspace, verifying that a given matrix minimizes the spec-
tral abscissa is challenging: the relevant tools, combining matrix and nonsmooth
analysis, have begun to appear only very recently. Two of the authors [2] have
studied the spectral abscissa’s subdifferential (in the sense of [4]). Using this work
we verify that the optimal solution in our particular example is a ‘sharp’ local
minimizer: that is, the function value grows at least linearly near the minimum.

We next consider the effect of perturbing our example. Using work of Arnold
[1] on canonical forms for parametrized matrices, we show that any affine subspace
sufficiently close to the original subspace contains a unique matrix close to the
original solution whose Jordan form consists of a single block: furthermore, vari-
ational calculus shows this matrix is also a sharp local minimizer of the spectral
abscissa over the subspace. In summary, the large Jordan block in the solution to
our example persists under arbitrary small perturbations.

Our example shows that, although matrices with large Jordan blocks are rare
in the space of all matrices, they appear not as singularities in spectral abscissa
minimization but instead rather naturally. Given the practical importance of these
problems, this emphasizes the importance of subdifferential analysis for matrices
with nontrivial Jordan structure. Our approach is also a striking illustration of the
power of modern variational analysis, as expounded in [4] for example, to attack
concrete nonconvex nonlipschitz problems of great significance.

2. The basic example

The example we describe in this section is central to the paper. We denote the
set of n × n complex matrices by Mn. The spectral abscissa α : Mn → R maps
matrices to the largest real part of their eigenvalues.
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Theorem 2.1. All nonzero vectors x in Cn−1 satisfy the inequality

α


−x1 1 0 . . . 0
x1 0 1 . . . 0

x2 0 0
. . .

...
...

...
...

. . . 1
xn−1 0 0 . . . 0

 > 0.

Thus x = 0 is a strict global minimizer of the function on the left-hand-side.

Proof. A standard induction argument shows the characteristic polynomial of the
matrix above is given by

px(λ) = λn + x1λ
n−1 −

n∑
j=2

xj−1λ
n−j .

Suppose all the roots of px have nonpositive real parts. By a classical result of
Gauss, the derivatives p(1)

x , p
(2)
x , p

(3)
x , . . . , p

(n−2)
x have all their roots in the convex

hull of the roots of px, and hence all these roots have nonpositive real parts.
Denote the roots of the quadratic

p(n−2)
x (λ) =

n!
2
λ2 + (n− 1)!x1λ− (n− 2)!x1

by λ1 and λ2. If x1 is nonzero, then we know
1
λ1

+
1
λ2

=
λ1 + λ2

λ1λ2
= n− 1,

which implies that at least one of λ−1
1 and λ−1

2 has a strictly positive real part,
whence so does λ1 or λ2. Thus x1 = 0.

Now we proceed by induction. For j = 2, 3, . . . , n, assuming x1 = x2 = x3 =
. . . = xj−1 = 0, we deduce xj = 0 since the roots of the polynomial

p(n−j−1)
x (λ) =

n!
(j + 1)!

λj+1 − (n− j − 1)!xj

all have nonpositive real part. Hence we see x = 0. ♣

3. The Jordan manifold

Our argument depends on the analytic structure of the setM of matrices in Mn

whose Jordan form consists of a single block. If we define the Jordan matrix J in
Mn by

J =


0 1 0 . . . 0
0 0 1 . . . 0

0 0 0
. . .

...
...

...
...

. . . 1
0 0 0 . . . 0

 ,

then

M = {S−1JS + δI : δ ∈ C, S ∈ GLn},
where GLn denotes the set of invertible matrices in Mn. We call this set M the
Jordan manifold. We summarize the properties we need in the next result. We make
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Mn into a Euclidean space (that is, a real inner product space) by endowing it with
the obvious vector space operations and the inner product 〈X,Y 〉 = Re trX∗Y .

Theorem 3.1 (Jordan manifold). The Jordan manifold M is a submanifold of
Mn of complex codimension n − 1. The tangent space to M at the matrix J is
given by

TJ(M) = {Z ∈Mn : 〈(Jj)∗, Z〉 = 0 (j = 1, 2, 3, . . . , n− 1)}.

If the matrix X is close to J in M, then

X = S−1JS + δI(3.2)

for some small complex δ and some matrix S close to I.

Proof. The manifold and tangent space structure may be found in [1]. If X is close
to J in M, then X is given by equation (3.2) and its unique eigenvalue δ must be
close to the unique eigenvalue of J , namely 0.

By [1, §3.4] there is a neighbourhood Ω of J in Mn and holomorphic functions
f : Ω→ Cn and T : Ω→ GLn satisfying the equations f(J) = 0, T (J) = I, and

Y = T (Y )−1


f1(Y ) 1 0 . . . 0
f2(Y ) 0 1 . . . 0

f3(Y ) 0 0
. . .

...
...

...
...

. . . 1
fn(Y ) 0 0 . . . 0

T (Y ), for all Y ∈ Ω.

The characteristic polynomial of Y is λn −
∑n

j=1 fj(Y )λn−j . Since X − δI and J

are similar, their characteristic polynomials coincide, so f(X − δI) = 0, and X is
close to J so T (X − δI) is close to I, as required. ♦

4. Subdifferentials and sharp minima

Given a Euclidean space E and a function f : E→ [−∞,∞], the regular subdif-
ferential of f at a point x in E at which f is finite is the set

∂̂f(x) = {y ∈ E : f(x+ z)− f(x) ≥ 〈y, z〉+ o(z) for small z ∈ E}.

If f is infinite at x, define ∂̂f(x) = ∅. The subdifferential ∂f(x) consists of those
elements y of E for which there exists a sequence of points xr approaching x in E
with f(xr) approaching f(x) and a sequence of elements yr ∈ ∂̂f(xr) approaching
y. If instead we have tryr approaching y for some sequence of reals tr decreasing
to 0 we obtain the horizon subdifferential ∂∞f(x): by definition 0 ∈ ∂∞f(x), and
if f is infinite at x, define ∂∞f(x) = {0}. We say f is subdifferentially regular at x
if it is locally lower semicontinuous, the subdifferential is nonempty and coincides
with the regular subdifferential, and the horizon subdifferential coincides with the
recession cone of the regular subdifferential (where the recession cone of a nonempty
closed convex set C is the set of vectors d satisfying c+ td ∈ C for all vectors c in
C and real t ≥ 0). For more details, see [4].

For example, consider the spectral abscissa: the next result is due to [2].
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Theorem 4.1 (Spectral abscissa subdifferential). The spectral abscissa α is sub-
differentially regular at the Jordan matrix J , with subdifferential given by

∂α(J) =

 1
n
I +

n−1∑
j=1

θj(Jj)∗ : θ ∈ Cn−1, Re θ1 ≥ 0

 .

Our interest in subdifferentials stems from their use in optimality conditions. It
is elementary to check, for example, that if a point x̄ in E is a local minimizer of
a function f , then it must satisfy the ‘necessary’ condition 0 ∈ ∂̂f(x̄). To obtain a
‘sufficient’ condition we need a stronger assumption. We call a local minimizer x̄
of f sharp if f(x̄) is finite and there exists a real δ > 0 such that

f(x̄+ z)− f(x̄) ≥ δ‖z‖ for all small z ∈ E.(4.2)

Clearly this inequality implies δB ⊂ ∂̂f(x̄), where B denotes the closed unit ball in
E. Conversely, for any real δ′ > 0, the inclusion δ′B ⊂ ∂̂f(x̄) implies that inequality
(4.2) holds for all real δ < δ′. Hence we have the following convenient (if strong)
sufficient condition.

Proposition 4.3 (Sharp minima). A point x̄ is a sharp local minimizer of a func-
tion f if and only if 0 ∈ int ∂̂f(x̄).

To analyze linearly parametrized examples like that of Theorem 2.1, we need a
chain rule. The following suffices for us. It concerns another Euclidean space Y, a
linear map A : E→ Y, and its adjoint A∗ : Y→ E.

Lemma 4.4 (Chain rule). If the function f is subdifferentially regular at 0 and the
linear map A satisfies the condition

A∗y = 0 and y ∈ ∂∞f(0)⇒ y = 0,

then the composite function f ◦A is subdifferentially regular at 0 with subdifferential

∂(f ◦A)(0) = A∗∂f(0).

Proof. This follows from [4, Thm 10.6]. ♥

We can now see that the global minimizer we described in Theorem 2.1 is also a
sharp local minimizer.

Example 4.5. Define a linear map A0 : Cn−1 →Mn by

x ∈ Cn−1 7→


−x1 0 0 . . . 0
x1 0 0 . . . 0
x2 0 0 . . . 0
...

...
...

...
xn−1 0 0 . . . 0

 .(4.6)

The adjoint A∗0 : Mn → Cn−1 is given by

(yrs) ∈Mn 7→ (y21 − y11, y31, y41, . . . , yn1)T .

Define the function f : Mn → R by

X ∈Mn 7→ α(J +X).
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By Theorem 4.1 (Spectral abscissa subdifferential) we know f is subdifferentially
regular at 0 with subdifferential

∂f(0) =

 1
n
I +

n−1∑
j=1

θj(Jj)∗ : θ ∈ Cn−1, Re θ1 ≥ 0


and horizon subdifferential

∂∞f(0) = (∂f(0))∞ =


n−1∑
j=1

θj(Jj)∗ : θ ∈ Cn−1, Re θ1 ≥ 0

 .

For any vector θ in Cn−1 we have

A∗0

n−1∑
j=1

θj(Jj)∗ = θ,

so the assumptions for the chain rule (Lemma 4.4) hold. We deduce

∂̂(f ◦A0)(0) = ∂(f ◦A0)(0) = A∗0∂f(0)

= {(θ1 − 1/n, θ2, θ3, . . . , θn−1)T : θ ∈ Cn−1, Re θ1 ≥ 0},
and since the interior of this set contains 0, we see 0 is a sharp local minimizer for
the example of Theorem 2.1.

5. Perturbation

We are interested in linearly parametrized spectral abscissa minimization prob-
lems

inf
x∈Ck

α(D +Ax),

for a given matrix D in Mn and a linear map A : Ck → Mn. In the example in
Theorem 2.1, D is the Jordan matrix J and A is the map A0 defined by (4.6). In
this case we showed x̄ = 0 is a sharp local minimizer: the corresponding matrix
D + Ax̄ clearly has Jordan form consisting of a single Jordan block. Our aim in
this final section is to show that this behaviour persists for arbitrary choices of D
close to J and A close to A0.

We start with a simple lemma.

Lemma 5.1. Given a linear map A : E → Y and a convex set C ⊂ E, if 0 lies
in the interior of AC, then it also lies in the interior of ÃC for all linear maps Ã
close to A.

Proof. If the result fails, then for some sequence of maps Ar approaching A we can
separate 0 from ArC. Hence there are unit vectors yr in Y satisfying

〈yr, Arx〉 ≥ 0 for all x ∈ C, r = 1, 2, 3, . . . .

We can assume yr approaches a unit vector y in Y, and then we have the contra-
diction

〈y,Ax〉 = lim
r
〈yr, Arx〉 ≥ 0 for all x ∈ C,

which completes the proof. ♠
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Returning to the context of the chain rule (Lemma 4.4), we next show sharp
local minima persist under arbitrary small perturbations of linearly parametrized
problems.

Theorem 5.2 (Sharp minima persist). Suppose the function f is subdifferentially
regular at 0 and the linear map A satisfies the condition

A∗y = 0 and y ∈ ∂∞f(0) ⇒ y = 0.

If 0 is a sharp local minimizer of the composite function f ◦ A, then it is also a
sharp local minimizer of f ◦ Ã for all linear maps Ã close to A.

Proof. We first claim, for all Ã close to A, the property

Ã∗y = 0 and y ∈ ∂∞f(0) ⇒ y = 0.

If this fails, there is a sequence of linear maps Ar approaching A and a sequence of
nonzero horizon subgradients yr in ∂∞f(0) satisfying A∗ryr = 0. Since ∂∞f(0) is a
closed cone, we can assume (yr) is a sequence of unit vectors converging to another
unit vector y in ∂∞f(0), but then

A∗y = lim
r
A∗ryr = 0,

which is a contradiction.
By the chain rule and Proposition 4.5 (Sharp minima) we know

0 ∈ int ∂(f ◦A)(0) = intA∗∂f(0).

The previous lemma now shows 0 ∈ int Ã∗∂f(0) for all Ã close to A, so the chain
rule applies again to show 0 ∈ int ∂(f ◦ Ã)(0), which completes the proof. 4

Theorem 5.3 (Perturbation). If the matrix D ∈Mn is close to the Jordan matrix
J and the linear map A : Cn−1 → Mn is close to the linear map A0 defined by
(4.6), then there is a unique point x̄ close to 0 in Cn−1 with D+Ax̄ in the Jordan
manifold M. Furthermore, x̄ is a sharp local minimizer for the linearly-constrained
spectral abscissa minimization problem

inf
x∈Cn−1

α(D +Ax).

Proof. The affine manifold J+A0Cn−1 has dimension n−1, the Jordan manifoldM
has codimension n− 1, and it is easy to check, by Theorem 3.1 (Jordan manifold),
the equivalence

A0x ∈ TJ(M) ⇔ x = 0.

Hence the map x 7→ J + A0x intersects M transversally at x = 0. The first claim
now follows from the inverse function theorem.

According to Theorem 3.1, we know D + Ax̄ = S−1JS + δI for some small
complex δ and some matrix S close to I, so we can rewrite our problem

inf
x∈Cn−1

α(S−1JS + δI +A(x− x̄)),

or equivalently (with the change of variables z = x− x̄)

inf
z∈Cn−1

α(J + S(Az)S−1).(5.4)

As we observed in Example 4.5, the unperturbed problem

inf
z∈Cn−1

α(J +A0z)
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has a sharp local minimum at 0. The linear map z ∈ Cn−1 7→ S(Az)S−1 is close to
A0. This, together with our calculations in Example 4.5, shows Theorem 5.2 (Sharp
minima persist) applies, so 0 is also a sharp local minimizer of problem (5.4), which
proves x̄ is a sharp local minimizer of the original perturbed problem, as required.

5
The unperturbed problem in the above result in fact has a strict global minimum

at 0, by Theorem 2.1. However, simple examples show the sharp local minimizers
for the perturbed problems may not be global minimizers.

The ideas of this paper are developed further in [3].

Acknowledgment

The authors thank Chris Godsil for discussions leading to the proof of Theorem
2.1.

References

[1] V.I. Arnold. On matrices depending on parameters. Russian Mathematical Surveys, 26:29–43,
1971. MR 46:400

[2] J.V. Burke and M.L. Overton. Variational analysis of non-Lipschitz spectral functions, Sep-
tember 1999. To appear in Mathematical Programming.

[3] J.V. Burke, A.S. Lewis, and M.L. Overton. Optimal stability and eigenvalue multiplicity, June
2000. Submitted to Foundations of Computational Mathematics.

[4] R.T. Rockafellar and R.J.-B. Wets. Variational analysis. Springer, Berlin, 1998.
MR 98m:49001

[5] L.N. Trefethen. Pseudospectra of linear operators. SIAM Review, 39:383–406, 1997.
MR 98i:47004

Department of Mathematics, University of Washington, Seattle, Washington 98195

E-mail address: burke@math.washington.edu

Department of Combinatorics & Optimization, University of Waterloo, Waterloo,

Ontario, Canada N2L 3G1

E-mail address: aslewis@math.uwaterloo.ca

Courant Institute of Mathematical Sciences, New York University, New York, New

York 10012

E-mail address: overton@cs.nyu.edu

http://www.ams.org/mathscinet-getitem?mr=46:400
http://www.ams.org/mathscinet-getitem?mr=98m:49001
http://www.ams.org/mathscinet-getitem?mr=98i:47004

	1. Introduction
	2. The basic example
	3. The Jordan manifold
	4. Subdifferentials and sharp minima
	5. Perturbation
	Acknowledgment
	References

