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Abstract We investigate the behavior of quasi-Newton algorithms applied to
minimize a nonsmooth function f , not necessarily convex. We introduce an inex-
act line search that generates a sequence of nested intervals containing a set of points
of nonzero measure that satisfy the Armijo and Wolfe conditions if f is absolutely
continuous along the line. Furthermore, the line search is guaranteed to terminate if
f is semi-algebraic. It seems quite difficult to establish a convergence theorem for
quasi-Newton methods applied to such general classes of functions, so we give a care-
ful analysis of a special but illuminating case, the Euclidean norm, in one variable
using the inexact line search and in two variables assuming that the line search is
exact. In practice, we find that when f is locally Lipschitz and semi-algebraic with
bounded sublevel sets, the BFGS (Broyden–Fletcher–Goldfarb–Shanno) method with
the inexact line search almost always generates sequences whose cluster points are
Clarke stationary and with function values converging R-linearly to a Clarke station-
ary value. We give references documenting the successful use of BFGS in a variety
of nonsmooth applications, particularly the design of low-order controllers for linear
dynamical systems. We conclude with a challenging open question.
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136 A. S. Lewis, M. L. Overton

1 Introduction

Methods for minimizing functions f : Rn → R which are not differentiable every-
where are based on the observation that the steepest descent (gradient) method rou-
tinely fails on such functions, regardless of whether the line search is exact or inexact.
By failure we mean that convergence takes place to non-stationary points, as has been
known at least since the 1970s and is explained in [19, Section 2.2]. The traditional
approach to designing algorithms for nonsmooth optimization is to stabilize steepest
descent by exploiting gradient or subgradient information evaluated at multiple points:
this is the essential idea of bundle methods [19,22] and also of the gradient sampling
algorithm [7,23]. In this paper we investigate the behavior of quasi-Newton (variable
metric) methods, particularly the well known BFGS (Broyden–Fletcher–Goldfarb–
Shanno) method, when applied to minimize nonsmooth functions, both convex and
nonconvex.

It was shown by Powell [42] that, if f is convex and twice continuously differ-
entiable, and the sublevel set {x : f (x) ≤ f (x0)} is bounded (x0 being the starting
point), then the sequence of function values generated by the BFGS method with an
inexact Armijo–Wolfe line search converges to or terminates at the minimal value
of f . This result does not follow directly from the standard Zoutendijk theorem as
one needs to know that the eigenvalues of the inverse Hessian approximation Hk do
not grow too large or too small. If the convexity assumption is dropped, pathological
counterexamples to convergence are known to exist [10,36], but it is widely accepted
that the method works well in practice in the smooth, nonconvex case [29]. See [39]
for further discussion of quasi-Newton methods for the case that f is smooth.

The behavior of quasi-Newton methods on nonsmooth functions has received little
attention. While any locally Lipschitz nonsmooth function f can be viewed as a limit
of increasingly ill-conditioned differentiable functions (see [45, Thm 9.67] for one the-
oretical approach, via “mollifiers”), such a view has no obvious consequence for the
algorithm’s asymptotic convergence behavior when f is not differentiable at its mini-
mizer. Yet, when applied to a wide variety of nonsmooth, locally Lipschitz functions,
not necessarily convex, the BFGS method in particular is very effective, automatically
using the gradient difference information to update an inverse Hessian approximation
Hk that typically becomes extremely ill-conditioned. As long as the line search never
returns a point where f is not differentiable, the method is well defined, and, unlike
steepest descent, rarely if ever seems to generate sequences of iterates whose cluster
points are not Clarke stationary. As a simple example, let f (x) = 6|x1|+3x2. On this
function, using a simple bisection-based backtracking line search with Armijo param-
eter chosen in [0, 1

3 ] and starting at [2; 3], steepest descent generates the sequence
2−k[2(−1)k; 3], k = 1, 2, . . ., converging to the origin. In contrast, BFGS with the
same line search rapidly reduces the function value towards −∞ [53]. For functions
with bounded sublevel sets, linear (geometric) convergence of the function values to
a locally minimal value is typical.

Although there has been little study of this phenomenon in the literature, the fre-
quent success of quasi-Newton methods on nonsmooth functions was observed by
Lemaréchal several decades ago. His comments in [27] include:
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Nonsmooth optimization via quasi-Newton methods 137

We have also exhibited the fact that it can be good practice to use a quasi-Newton
method in nonsmooth optimization [as] convergence is rather rapid, and often
a reasonably good approximation of the optimum is found; this, in our opinion,
is essentially due to the fact that inaccurate line-searches are made. Of course,
there is no theoretical possibility to prove convergence to the right point (in fact
counterexamples exist), neither are there any means to assess the results.
...this raises the question: is there a well-defined frontier between quadratic and
piecewise linear, or more generally, between smooth and nonsmooth functions?

For a related discussion, see [19, Ch. VIII, Sec. 3.3].
Lemaréchal’s observation was noted in several papers of Lukšan and Vlček [34,35,

48]. They wrote in [48]: “standard variable metric methods are relatively robust and
efficient even in the nonsmooth case…. On the other hand, no global convergence has
been proved for standard variable metric methods applied to nonsmooth problems,
and possible failures or inaccurate results can sometimes appear in practical computa-
tions”. Motivated by the low overhead of quasi-Newton methods, Lukšan and Vlček
proposed new methods intended to combine the global convergence properties of bun-
dle methods [19,22] with the efficiency of quasi-Newton methods; Haarala [18] gives
a good overview. Other papers that combine ideas from bundle and quasi-Newton
methods include [4,33,38,43].

Our interest is in standard quasi-Newton methods, particularly BFGS, with an
inexact Armijo–Wolfe line search, applied directly to nonsmooth functions without
any modifications. Despite indications to the contrary in the quotes above, the only
counterexamples to convergence of which we are aware are either dependent on spe-
cialized initial conditions or can be explained by the limitations of rounding errors,
and, as we explain later, a simple termination test, similar to that used by bundle
methods and the gradient sampling method, can be used to detect approximate Clarke
stationarity. Although we are motivated by our successful experience with BFGS as a
practical tool for nonsmooth optimization, especially in the nonconvex case, we look
closely at one particularly simple convex example: the Euclidean norm ‖ ·‖. Our hope
is that this will lead the way toward a more complete understanding of the behavior
of quasi-Newton methods for general nonsmooth problems.

The paper is organized as follows. We begin with some definitions in Sect. 2. Then,
in Sect. 3, we give an analysis of the Broyden class of quasi-Newton methods on the
norm function for n = 2 when the line search is exact. We show that they converge
to the origin, spiraling in with a Q-linear rate 1

2 with respect to the number of line
searches, independent of the initial Hessian approximation. Numerical evidence indi-
cates that this property extends to n > 2, with a rate of convergence of approximately
1− 1/

√
2n.

The remainder of the paper is devoted to methods using an inexact line search. Line
searches used by quasi-Newton methods for smooth optimization normally impose
an Armijo condition on the function value and a Wolfe condition on the directional
derivative. Often, a “strong” version of the Wolfe condition is imposed, insisting on a
reduction in the absolute value of the directional derivative, in contrast to the standard
condition that requires only an algebraic increase. The latter is all that is required to

123



138 A. S. Lewis, M. L. Overton

ensure positive definiteness of the updated inverse Hessian approximation; nonethe-
less, it is popular both in textbooks and software to require the “strong” condition,
despite the substantial increase in implementation difficulty, perhaps because this is
the traditional route to proving convergence results for nonlinear conjugate gradient
methods on smooth functions. For nonsmooth optimization, it is clear that enforcing
the “strong” Wolfe condition is not possible in general, and it is essential to base the
line search on the less restrictive condition. The line search we describe in Sect. 4
is similar to earlier methods in the literature, but our analysis differs. We prove that
the line search generates a sequence of nested intervals containing a set of points of
nonzero measure that satisfy the Armijo and Wolfe conditions, assuming that f is
absolutely continuous along the line. We also prove that the line search terminates
under slightly stronger assumptions, in particular covering all semi-algebraic func-
tions (not necessarily locally Lipschitz), and we give a complexity analysis for the
case that f is convex. In order to obtain these results we make the idealized assump-
tion that the “oracle” that returns function and gradient values at a given point x is able
to detect whether or not f is differentiable along the line at the point x , in contrast to
the usual oracle that returns a subgradient instead of a gradient in the nondifferentiable
case.

The success of quasi-Newton methods when f is sufficiently smooth with nonsin-
gular Hessian at a minimizer is in large part because inexact line searches quickly find
an acceptable step: eventually the method always accepts the unit step and converges
superlinearly. The behavior of these methods with an inexact line search on nonsmooth
functions is complex: it is far from clear whether the direction will be well scaled. As a
first analysis of this crucial but difficult question, we carefully consider the univariate
case. In Sect. 5 we prove that, for f (x) = |x |, the function values computed by a
quasi-Newton method converge to zero R-linearly with convergence rate 1

2 . Numeri-
cal evidence indicates that this result extends to the norm function with n > 1, with a
rate of convergence for BFGS of approximately 1− 1/(2n).

In Sect. 6, we summarize our numerical experience with BFGS on nonsmooth
functions. We focus on a specific example that illustrates several interesting
points: a function defined by a product of eigenvalues. Systematic investiga-
tions of other classes of nonsmooth examples appear elsewhere [31]. We have
found consistently that, provided the method is initialized randomly, points where
f are nondifferentiable are not encountered by the line search and, more sur-
prisingly, cluster points of the algorithm always seem to be Clarke stationary
(typically local minimizers). Furthermore, the computed function values converge
R-linearly to the Clarke stationary value, with a rate of convergence that var-
ies in an unexpectedly consistent way with the dimension and parameters defin-
ing the problem in each class. For some problems, convergence may not be
observed, but this seems to be due to rounding error caused by ill-condition-
ing, not a failure of the method to converge in exact arithmetic. Compari-
sons with other methods for nonsmooth optimization may be found in [46,47].
A particularly interesting class of examples, Nesterov’s nonsmooth Chebyshev-
Rosenbrock functions, for which BFGS finds non-minimizing Clarke stationary points,
is discussed in [17] and [20]. We give references documenting the successful use
of BFGS in several nonsmooth applications, particularly the design of low-order
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Nonsmooth optimization via quasi-Newton methods 139

controllers for linear dynamical systems. We conclude in Sect. 7 with some chal-
lenging open questions.

An intuitive, although far from complete, argument for the success of quasi-
Newton methods on nonsmooth problems goes as follows. Because the gradient dif-
ferences may be enormous compared to the difference of the points where they are
computed, the inverse Hessian approximation typically becomes very ill-conditioned
in the nonsmooth case. Eigenvectors corresponding to tiny eigenvalues of Hk are
directions along which, according to the quadratic model constructed by the method,
the function has a huge second derivative. In fact, of course, f is not differentiable
at the local optimizer being approximated, but can be arbitrarily well approximated
by a function with a sufficiently ill-conditioned Hessian. As is familiar from inte-
rior-point methods for constrained optimization, it is this ill-conditioning of Hk that
apparently enables the method to work so well. Remarkably, if the method is not ter-
minated earlier, it is typical that the condition number of Hk approaches the inverse
of the machine precision before rounding errors cause a breakdown in the method,
usually failure to obtain a reduction of f in the inexact line search. The spectral
decomposition of the final Hk typically reveals two subspaces along which the behav-
ior of f is very different: the eigenvalues that are not relatively tiny are associated
with eigenvectors that identify directions from the final iterate along which f varies
smoothly, while the tiny eigenvalues are associated with eigenvectors along which
f varies nonsmoothly. More specifically, when applied to partly smooth functions
[28], it seems typical that quasi-Newton methods automatically identify the U and
V-spaces associated with f at the approximate minimizer. Furthermore, even when
Hk is very ill-conditioned, the BFGS direction is typically relatively well scaled, and
this property does not deteriorate as the iteration count k increases. Mysteries that
remain include the mechanism that prevents the method from stagnating, the reason
for the relative well-scaledness of the BFGS direction, and the condition measure
of f that determines the surprisingly consistent linear rates of convergence that we
observe.

Comments in the literature observing that the popular limited-memory variant of
BFGS sometimes works well in practice on nonsmooth problems have appeared
occasionally: see [25,54] as well as the comparisons in [47]. Negative comments
have also appeared [18, p. 83], [52], leading the authors to propose modifications
to the method. Although we have much less experience with the limited-memory
variant, we speculate that some of the failures that have been observed may be
due to the use of a “strong” Wolfe line search, which can cause failure on simple
examples.

2 Definitions

By a quasi-Newton method for minimizing a function f : Rn → R we mean the
following. Let xk denote the current point at iteration k = 0, 1, . . . The gradient of
f at xk is denoted ∇ f (xk) and abbreviated to ∇ fk . We use Hk to denote a positive
definite matrix which is an estimate of the inverse Hessian ∇2 f (xk)

−1.
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Algorithm 2.1 (quasi-Newton method)

Choose x0 with f differentiable at x0, set H0 to a positive
definite matrix and k ← 0

repeat
set pk ←−Hk∇ fk

set xk+1 ← xk + tk pk , where tk > 0 is chosen by a line search
if f is not differentiable at xk+1, or ∇ fk+1 = 0, stop.
set yk ← ∇ fk+1 −∇ fk

choose Hk+1 to be a positive definite matrix satisfying
the secant condition Hk+1 yk = tk pk

k ← k + 1
end (repeat)

If f is not differentiable at xk+1 we say that the algorithm breaks down (in theory).
If ∇ fk+1 = 0 we say it terminates at a smooth stationary point. A more practical
stopping criterion will be introduced in Sect. 6.

The BFGS update is defined by

Hk+1 = Vk Hk V T
k + tk(p

T
k yk)

−1 pk pT
k , where Vk = I − (pT

k yk)
−1 pk yT

k . (2.2)

Note that Hk+1 can be computed in O(n2) operations since Vk is a rank one perturba-
tion of the identity. There are alternative implementations, notably those that update
a factorization of the estimate of ∇2 f (xk) instead of its inverse, but no compelling
advantage to these has been established when f is smooth [39].

The Broyden family of quasi-Newton updates is defined by a parameter φ: when
φ = 0, the Broyden update reduces to BFGS, while for φ = 1, it reduces to the
Davidon–Fletcher–Powell (DFP) update [39, Sec. 6.3]. The updated matrix Hk+1 is
guaranteed to be positive definite for all φ ∈ [0, 1] as long as the line search enforces
the Wolfe condition. Powell’s result on the convergence of BFGS with an Armijo–
Wolfe inexact line search was extended in [8] to the Broyden class for φ ∈ [0, 1).

Let A be an invertible n × n matrix. Applying any method in the Broyden class to
the function g defined by g(x) = f (Ax) using starting point x0 and initial inverse
Hessian approximation H0 is equivalent to replacing g, x0 and H0 by f, Ax0 and
AH0 AT , respectively. This well-known and desirable invariance property of quasi-
Newton methods holds regardless of whether f is smooth or not.

When we refer to initializing x and H randomly, we mean generating x0 from the
normal distribution and H0 from the Wishart distribution, that is H0 = X T X , where
the entries of the square matrix X are normally distributed.

We use ∂ f (x) to denote the Clarke subdifferential [9,45] of f at x , which for
locally Lipschitz f is simply the convex hull of the limits of gradients of f evaluated
at sequences converging to x [6, Theorem 6.2.5]. An element of ∂ f (x) is called a
subgradient of f at x . A locally Lipschitz, directionally differentiable function f is
regular at a point when its directional derivative x 
→ f ′(x; d) is upper semicontin-
uous there for every fixed direction d, and in this case 0 ∈ ∂ f (x) is equivalent to the
first-order optimality condition f ′(x, d) ≥ 0 for all directions d. Convex functions
and smooth functions are regular.
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Nonsmooth optimization via quasi-Newton methods 141

A regular function f is partly smooth at x relative to a manifold M containing x
[28] if (1) its restriction to M is twice continuously differentiable near x , (2) ∂ f is
continuous on M near x , and (3) par ∂ f (x), the subspace parallel to the affine hull
of the subdifferential of f at x , is exactly the subspace normal to M at x . For con-
venience we refer to par ∂ f (x) as the V-space for f at x (with respect to M), and
to its orthogonal complement, the subspace tangent to M at x , as the U-space for f
at x . When we refer to the V-space and U-space without reference to a point x , we
mean at a minimizer. For nonzero y in the V-space, the mapping t 
→ f (x + t y) is
necessarily nonsmooth at t = 0, while for nonzero y in the U-space, t 
→ f (x + t y)
is differentiable at t = 0 as long as f is locally Lipschitz. For example, the Euclidean
norm is partly smooth at 0 with respect to the trivial manifold {0}, the V-space at 0
is Rn , and the U-space is {0}. When f is convex, the partly smooth nomenclature is
consistent with the usage of V-space and U-space in [32]. Most of the functions that
we have encountered in applications are partly smooth at local optimizers with respect
to some manifold, but many of them are not convex.

The graph of a semi-algebraic function is a finite union of sets, each defined by a
finite list of polynomial inequalities.

If a sequence {τk} converges to a limit μ with limk→∞ |τk+1 − μ|/|τk − μ| = r,
we say that the convergence of τk is Q-linear with rate r . If a sequence {υk} satisfies
|υk − μ| ≤ |τk − μ| where {τk} converges to μ with Q-linear rate r , then we say that
the convergence of υk is R-linear with rate r .

3 The norm function, with an exact line search

Suppose that the line search in Algorithm 2.1 is exact: tk minimizes the function
t 
→ f (xk + tpk). For many nonsmooth functions, the consequence may be that f
is not differentiable at xk+1, in which case Algorithm 2.1 breaks down (in theory).
The standard approach to nonsmooth optimization allows for the use of a subgradient
instead of the gradient at such a point, possibly leading to a null step (tk = 0), but if
Algorithm 2.1 is generalized in this way, then using an exact line search it may fail on
simple examples [30].

However, such concerns do not apply to the Euclidean norm function f = ‖ · ‖,
which has only one point where f is not differentiable: the minimizer. We therefore
focus our analysis in this section on the norm function.

We first note a well-known property of quasi-Newton methods with an exact line
search.

Proposition 3.1 If the function t 
→ f (xk + tpk) has a local minimizer at tk and the
function f is differentiable at xk+1, then pT

k+1 yk = 0.

Proof The updated matrix Hk+1 satisfies the secant condition Hk+1 yk = tk pk . The
assumptions imply pT

k ∇ fk+1 = 0. We deduce

yT
k pk+1 = −yT

k Hk+1∇ fk+1 = −tk pT
k ∇ fk+1 = 0,

as required. �
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142 A. S. Lewis, M. L. Overton

The analysis in the next subsection is limited to two variables, but we will make
some experimental observations for n > 2 in Sect. 3.2.

3.1 The case n = 2

We use the previous result to develop a recursive relationship for the angle defined by
the vector xk , and prove the following result. The quasi-Newton algorithm terminates
only if it generates an iterate xk = 0, which can happen only if Hk−1 is a multiple of
the identity, since ∇ f (x) = ‖x‖−1x .

Theorem 3.2 Consider Algorithm 2.1 with an exact line search applied to the Euclid-
ean norm in R2. Suppose the algorithm does not terminate. Then the sequence of
iterates {xk} converges to zero at Q-linear rate 1

2 , eventually rotating around zero
with consistent orientation, either clockwise or counterclockwise, through an angle of
magnitude approaching π

3 .

Proof For each iteration k = 0, 1, 2, . . ., let θk denote the magnitude of the angle
between the search direction pk and the vector−xk . Since the algorithm does not ter-
minate, θk > 0. Since Hk is positive definite, pk is a descent direction: 0 > pT

k ∇ fk =
−pT

k xk so θk <
π
2 . We seek to express θk+1 in terms of θk .

Without loss of generality we can suppose

xk =
[

1
0

]
and pk =

[− cos θk

sin θk

]
, giving xk+1 =

[
sin2 θk

sin θk cos θk

]
,

since the line search is exact. By Lemma 3.1, the search direction pk+1 is orthogonal
to the vector

yk = ∇ fk+1 −∇ fk =
[

sin θk

cos θk

]
−

[
1
0

]
.

Let ψ denote the magnitude of the angle between yk and −xk+1. Then θk+1 =
|π2 − ψ |, so

sin θk+1 = | cosψ | =
∣∣∣ yT

k xk+1

‖yk‖ · ‖xk+1‖
∣∣∣ = ∣∣∣ sin θk(sin θk − 1)+ cos2 θk√

(1− sin θk)2 + cos2 θk

∣∣∣

=
√

1− sin θk

2
.

Now elementary calculus shows that the mapping s 
→
√

1−s
2 maps the interval

[0, 1] onto the interval I = [0, 1√
2
], and is a contraction mapping on I . Hence sin θk

must converge to the fixed point, namely 1
2 , so the angle θk approaches π

3 , and the

ratio ‖xk+1‖
‖xk‖ approaches 1

2 , showing Q-linear convergence.
It remains to show that the orientation of rotation of the iterates xk is eventually

consistent. For large k, we can assume without loss of generality that the iterate xk
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is [1, 0]T , that the next iterate xk+1 is close to [ 14 ,
√

3
4 ]T , corresponding to a counter-

clockwise rotation through an angle of approximately π
3 . Furthermore, the next search

direction pk+1 is orthogonal to the vector yk , which is close to [− 1
2 ,
√

3
2 ]T . Hence

pk+1 has the same direction, approximately, as ±[
√

3
2 ,

1
2 , ]T , and since it must be a

descent direction at xk+1, the sign must be negative. It follows that the next iterate
xk+2 results from another counterclockwise rotation of approximately π

3 from xk+1,
so the orientation of rotation is indeed eventually consistent.

A more detailed analysis for BFGS [30] shows that the step tk satisfies

tk → 1

4
as k →∞.

Furthermore, the inverse Hessian approximation Hk satisfies

spectrum(Hk) ∼ 1

2k
{3+√3, 3−√3}.

In fact, it is easy to check directly that the following holds:

Proposition 3.3 (spiral behavior) Consider Algorithm 2.1 with the BFGS update (2.2),
with an exact line search, applied to the Euclidean norm in R2, and initialized by

x0 =
[

1
0

]
and H0 =

[
3 −√3
−√3 3

]
.

The method generates a sequence of vectors {xk} that rotate clockwise through an
angle of π3 and shrink by a factor 1

2 at each iteration.

3.2 Experiments with n > 2

We do not know how to extend the analysis of the previous subsection to n > 2.
However, numerical experiments implementing the BFGS iteration, or equivalently
any method in the Broyden class (see Sect. 3.3), using the easily computed minimizing
step tk , indicate that similar results surely hold for n > 2. In Fig. 1, the left panel shows
the evolution of fk = ‖xk‖ for typical runs for n = 2, 4, 8 and 16, with both x and H
initialized randomly. The right panel displays estimated Q-linear convergence rates
for the sequence { fk} for varying n. Each asterisk plots the mean of 10 observed con-
vergence rates, each computed by a least squares fit to a different randomly initialized
sequence. Since the convergence rates are close to 1 for large n, we plot− log2(1− r)
against log2(n), where r is the average estimated convergence rate. The observed
rates grow consistently with n, somewhat faster than 1 − 1/

√
2n. Furthermore, the

rate of convergence is apparently independent of H0 unless the method terminates at
the origin.
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Fig. 1 Convergence of quasi-Newton methods with an exact line search applied to f (x) = ‖x‖. Left plots
function values for typical runs for n = 2, 4, 8 and 16. Right plots − log2(1− r) against log2(n) where r
is the estimated Q-linear convergence rate for the sequence of function values, averaged over 10 runs

3.3 The Broyden class

Dixon’s theorem [13], that all methods in the Broyden family generate the same
sequence of iterates {xk} when an exact line search is used, applies to the Euclidean
norm function without modification. Thus, the convergence rates in Theorem 3.2 and
Fig. 1 apply to the whole Broyden family. However, the steps tk (and the matrices Hk)
do depend on the Broyden parameter φ.

Numerical experiments on f = ‖ · ‖ show that the minimizing steps tk converge
for all φ ∈ [0, 1], and Fig. 2 shows their limiting values as a function of φ. The left
panel shows results for n = 2 and the right panel for n = 16. Each circle shows
the experimentally determined limiting steps, averaged over 10 randomly initialized
runs. Experiments were carried out for φ ranging from −0.5 to 1.5. When φ < 0,
the updated matrix Hk may not be positive definite, and hence tk may be negative;
nonetheless, as long as Hk is never singular, the steps converge to a positive value.
For values of φ that are sufficiently large, the steps diverge.

The solid curve plots the function 1/(2− n(φ− 1)), which approximates the limit-
ing step well for n = 2 and seems to be a reasonably good upper bound when n > 2.
This implies, in the case φ = 0 (BFGS), that 1/(2 + n) is an upper bound on the
limiting step. For the case φ = 1 (DFP), the upper bound is 1

2 . The results might
suggest that DFP is more favorable for use with an inexact line search as fewer func-
tion evaluations would be needed, at least on this example. However, this conclusion
overlooks the fact that the limiting step diverges when φ is not much greater than 1,
specifically somewhat more than the pole in the upper bound formula, φ = 1+ 2/n.
This indicates a possible instability for DFP, which is perhaps not surprising, given its
well known relatively poor performance, with respect to BFGS, for smooth functions
[39].
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Fig. 2 Limiting steps for the Broyden family using an exact line search on f (x) = ‖x‖. Left the limiting
steps as a function of the Broyden parameter φ when n = 2. Right same for n = 16

4 An inexact line search for nonsmooth functions

We consider here an inexact line search for nonsmooth optimization very close to
one suggested by Lemaréchal [26], and similar to analogous methods of Wolfe [51]
(for the convex case) and Mifflin [37]. This line search imposes an Armijo condition on
reduction of the function value and a Wolfe condition requiring an algebraic increase
in the directional derivative along the line. Our algorithm differs from previous ones
in one key respect: how the “oracle” that computes the function and gradient at a given
point handles the nondifferentiable case.

Let x̄ be an iterate of an optimization algorithm and p̄ be a search direction. It is
convenient to define the line search objective h : R+ → R by

h(t) = f (x̄ + t p̄)− f (x̄).

The standard approach to line searches for nonsmooth optimization requires that when
f is nondifferentiable at x̄ + t̄ p̄ for a given t̄ , the oracle computes a subgradient ḡ
of f at x̄ + t̄ p̄ instead of the gradient, resulting in the subgradient ḡT p̄ of h at t̄
instead of h′(t̄). In contrast, we assume that the oracle determines whether or not h
is differentiable at t̄ , and if so, it returns h′(t̄). This allows us to focus in this section
entirely on the properties of the univariate function h without being concerned about
the properties of the underlying function f .

We seek a method for selecting a step under the following assumption. If f is dif-
ferentiable at x̄ , then the quantity s is ∇ f (x̄)T p̄, but we do not need to assume this
for the results that follow.

Assumption 4.1 The function h : R+ → R is absolutely continuous on every
bounded interval, and bounded below. Furthermore, it satisfies

h(0) = 0 and s = lim sup
t↓0

h(t)

t
< 0.
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Absolutely continuous functions may be characterized as indefinite integrals of inte-
grable functions [44]. They are differentiable almost everywhere, and satisfy the fun-
damental theorem of calculus. Lipschitz functions are absolutely continuous, as are
semi-algebraic functions. Hence if the function f is locally Lipschitz or semi-alge-
braic, the line search objective h satisfies the absolute continuity assumption.

Given constants c1 < c2 in the interval (0, 1), we seek an Armijo–Wolfe step, which
we define to be a number t > 0 satisfying the Armijo and Wolfe conditions

A(t) : h(t) < c1st (4.2)

W (t) : h is differentiable at t with h′(t) > c2s. (4.3)

Lemma 4.4 If the condition A holds at the number α > 0 but fails at the number
β > α and the function h is absolutely continuous on the interval [α, β], then the set
of Armijo–Wolfe steps in the interval [α, β] has nonzero measure.

Proof Since condition A holds at α, by continuity there exists a number γ in the
interval (α, β] such that A holds throughout the interval [α, γ ]. Now suppose that the
conclusion of the lemma fails. Then we must have h′ <= c2s almost everywhere on
the interval [α, γ ]. Thus we can define a number t∗ by

t∗ = sup
{
t ∈ [α, β] : h′ ≤ c2s almost everywhere on [α, t]} .

Then h′ ≤ c2s almost everywhere on the interval [α, t∗], so

h(t∗)− h(α) =
t∗∫
α

h′ ≤ c2s(t∗ − α) ≤ c1s(t∗ − α).

Since the condition A(α) holds,

H(t∗)− c1st∗ ≤ h(α)− c1sα < 0,

so the condition A(t∗) holds. Since the condition A(β) fails, t∗ �= β, so in fact t∗ < β.
By the definition of t∗, for all small δ > 0, condition W must hold on a subset of
the interval [t∗, t∗ + δ] of positive measure. But by continuity, the condition A holds
throughout this interval for small δ, giving a contradiction. �
Theorem 4.5 (existence of step) Under Assumption 4.1, the set of Armijo–Wolfe steps
has nonzero measure.

Proof The “lim sup” assumption ensures that there exists α > 0 satisfying

h(α)

α
< c1s

so condition A(α) holds. On the other hand, condition A(β) must fail for all large
β > 0 because the function h is bounded below. Now apply the lemma. �
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In fact, for the purposes of the above result, the “lim sup” in Assumption 4.1 could be
replaced by “lim inf”.

4.1 Definition of the inexact line search

We now define the line search.

Algorithm 4.6 (line search)

α← 0
β ←+∞
t ← 1
repeat

if A(t) fails
β ← t

elseif W (t) fails
α← t

else
stop

if β < +∞
t ← (α + β)/2

else
t ← 2α

end(repeat)

Each execution of the repeat loop involves trying one new choice of the step t , calling
the oracle to evaluate h(t) and, when it exists, its derivative h′(t). We call such an
execution a trial.

Theorem 4.7 (convergence) Whenever the above line search iteration terminates,
the final trial step t is an Armijo–Wolfe step. In particular, it terminates under the
assumption

lim
t↑t̄

h′(t) exists in [−∞,+∞] for all t̄ > 0. (4.8)

If, on the other hand, the iteration does not terminate, then it eventually generates a
nested sequence of finite intervals [α, β], halving in length at each iteration, and each
containing a set of nonzero measure of Armijo–Wolfe steps. These intervals converge
to a step t̃ > 0 such that

h(t̃) = c1st̃ and lim sup
t↑t̃

h′(t) ≥ c2s. (4.9)

Proof It is clear that if the line search terminates at t , both conditions A(t) and W (t)
hold. Suppose the iteration does not terminate. Eventually, the upper bound β becomes
finite, since otherwise condition A(2k) must hold for all k = 1, 2, . . ., contradicting
the boundedness assumption. Furthermore, from the update for β, once β is finite,
condition A(β) always fails.
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Next, notice that eventually the lower bound α is positive. Otherwise, α is always
zero, and after the upper bound β becomes finite the trial step t keeps halving and the
condition A(t) keeps failing, contradicting the “lim sup” condition in Assumption 4.1.
Notice also that after any update to the lower bound α, the condition A(α)must hold.

Let us denote by [αk, βk] the sequence of intervals generated by the iteration. Once
αk > 0 and βk < ∞, the intervals are positive, finite, and halve in length at each
iteration, and the sequences {αk} and {βk} are monotonic increasing and decreasing
respectively. Hence there must exist a point t̃ > 0 such that αk ↑ t̃ and βk ↓ t̃ .
Furthermore, we know that the condition A(αk) holds and the condition A(βk) fails.

We deduce several consequences. First, by the continuity of the function h at the
point t̃ , we must have h(t̃) = c1st̃ , so the condition A(t̃) fails. On the other hand, the
condition A(αk) holds, so αk < t̃ for all k. Now, Lemma 4.4 shows the existence of
an Armijo–Wolfe step tk ∈ [αk, t̃]. In particular, we know h′(tk) > c2s, so property
(4.9) follows.

Now suppose assumption (4.8) holds, and yet, by way of contradiction, that the iter-
ation does not terminate but instead generates an infinite sequence of intervals [αk, βk]
as above, shrinking to a point t̃ > 0. Every αk is a trial step at some iteration j ≤ k,
so the condition W (αk) fails. By our assumption, the function h is differentiable on
some nonempty open interval (t ′, t̃), and hence in particular at αk for all large k, and
so must satisfy h′(αk) ≤ c2s. We deduce

lim
t↑t̃

h′(t) ≤ c2s < c1s. (4.10)

On the other hand, h is continuous, so by the Mean Value Theorem there exists a point
γk in the interval (αk, t̃) satisfying

h′(γk) = h(t̃)− h(αk)

t̃ − αk
≥ c1st̃ − c1sαk

t̃ − αk
= c1s.

Since γk converges to t̃ from the left, this contradicts inequality (4.10). �
The convergence result above is not restricted to Lipschitz functions. In particular,

assumption (4.8) holds for any semi-algebraic function h. In contrast with our result,
[26] restricts attention to locally Lipschitz functions with a “semismoothness” prop-
erty. As we now sketch, a very similar argument to the proof above covers that case too.

Suppose the function h is weakly lower semismooth at every point t̄ > 0: in other
words, it is locally Lipschitz around t̄ and satisfies

lim inf
τ↓0

h(t̄ + τd)− h(t̄)

τ
≥ lim sup

k
gkd

for d = ±1 and any sequence of subgradients {gk} of h at t̄ + τkd where τk ↓ 0.
In the language of [37], this is equivalent to the function −h being “weakly upper
semismooth”. Suppose in addition that h is differentiable at every trial step. We then
claim that the line search terminates.
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To see this, assume as in the proof that the iteration does not terminate, so we obtain
a sequence of positive numbers {αk} increasing to a point t̃ > 0 such that h(t̃) = c1st̃ ,
the condition A(αk) holds, the condition W (αk) fails, and h is differentiable at αk , for
each k = 1, 2, 3, . . .. We deduce the inequalities

lim inf
τ↓0

h(t̃ − τ)− h(t̃)

τ
≤ lim inf

k

h(αk)− h(t̃)

t̃ − αk

≤ lim inf
k

c1sαk − c1st̃

t̃ − αk
= −c1s

< −c2s

≤ lim sup
k

h′(αk)(−1),

which contradicts the definition of weak lower semismoothness.

4.2 Complexity of the line search on a convex function

Unlike the method of [26], due to our different treatment of points where h is not
differentiable, our line search method may fail to terminate on some pathological
functions, even assuming convexity. For example, consider the function h : R+ → R
defined by h(t) = t2 − t for any number t of the form

ηk =
k∑

j=0

(−2)− j ,

and for t equal to 0 or 2
3 or larger than 1. On the closed intervals between neighboring

points of this form, define h by linear interpolation. Then h is convex (although not
semi-algebraic), and has a piecewise linear graph with corners (ηk, h(ηk)) accumulat-
ing at the point ( 2

3 ,− 2
9 ). The quantity s defining the Armijo and Wolfe conditions is

h(1/2)/(1/2) = −1/2, so if c1 = 2
3 , the points satisfying A(·) constitute the interval

(0, 2
3 ). For any c2 ∈ (c1, 1), the sequence of trial points is then the sequence of partial

sums {ηk} given above. The condition A(ηk) fails for even integers k and holds for
odd k, and condition W (ηk) always fails due to nondifferentiability. Hence the line
search does not terminate.

However, in the convex case we can bound the number of function trials that are
needed to generate a point inside an interval in which almost every point satisfies the
Armijo and Wolfe conditions.

Proposition 4.11 (complexity of line search) Consider a convex function h satisfying
Assumption 4.1. Then the set of Armijo–Wolfe steps is an open interval I ⊂ R+, with
any points where h is nondifferentiable removed. Suppose I has left-hand endpoint
b > 0 and length a ∈ (0,+∞]. Define

d = max{1+ �log2 b�, 0}.
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Then after a number of trials between

d + 1 and d + 1+max
{

d +
⌊

log2
1

a

⌋
, 0

}

(interpreted in the natural way when a = +∞), the line search tries a step in I .

Proof By convexity, it is easy to see that the interval of interest is given by

b = inf{t > 0 : W (t) holds}
b + a = sup{t > 0 : A(t) holds}.

The line search starts by doubling the search direction until the trial satisfies t > b.
Assuming this step does not lie in the interval I , the condition A(t) must fail, so the
interval [α, β] used by the line search to bracket an Armijo–Wolfe step is [0, t]. After
this doubling phase, the method moves to a bisection phase, repeatedly trying a point
t equal to the midpoint of the current bracketing interval. As long as this point lies
outside I , the trial t replaces either the left or right endpoint of the bracket, depending
on whether t ≤ b or t ≥ b + a.

It is easy to see that the number of doublings is d, so the number of trials needed in
this phase is d + 1. After this phase, the bracketing interval has length 2d . In fact, if
the method continues, the interval I must be contained within the bracket [2d−1, 2d ],
and has length a. To find a point in I , the bisection phase repeatedly halves the length
of the current bracket. Notice 2d−1 is a previous trial point. Hence we need at most

max
{

d +
⌊

log2
1

a

⌋
, 0

}

further trials before trying a point in I . The result follows.

In the above result, consider the special case where b is large but a = 1, so the
interval I is (b, b + 1).

Then the line search will perform a large number,

d = 1+ �log2 b�,
of doublings, and then performs between zero and d additional bisections. The point b
lies in the interval [2d−1, 2d ]. If b lies in the open unit interval 2d − (0, 1), no further
trials will be needed. If, on the other hand, b lies in the interval 2d−2 + 2d−1− (0, 1),
one further trial will be needed. Similarly, there exist two open unit intervals of pos-
sible values of b requiring two further trials, four requiring three, and more generally,
2m−1 unit intervals requiring m further trials, for m = 1, 2, . . . , d − 1. If the point b
was a random variable, uniformly distributed in the interval [2d−1, 2d ], the expected
number of trials until we try a point in I is then

21−d · 0+ 21−d · 1+ 22−d · 2+ 23−d · 3+ · · · + 2−1 · (d − 1)

= 21−d(1+ 2 · 2+ 22 · 3+ · · · + 2d−2 · (d − 1))

= d − 2+ 21−d .
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Thus the expected number of trials in the bisection phase is roughly log2 b, so the
expected total number of trials is about 2 log2 b.

5 The norm function, with the inexact line search

We now consider the behavior of quasi-Newton methods using the line search of
Algorithm 4.6 to minimize the Euclidean norm function ‖ · ‖. Our analysis in the next
subsection is limited to the most trivial case: n = 1, but we discuss experimental
results for n > 1 in Sect. 5.2.

5.1 The absolute value

When n = 1, the matrix Hk+1 is completely defined by the secant equation, so we use
the terminology “secant method” instead of quasi-Newton method. Since f (x) = |x |,
the line search objective is defined by

h(t) = |xk + tpk | − |xk |,

and Assumption 4.1 is satisfied with

pk xk < 0 and s = −|pk |.

Setting the Armijo parameter c1 to zero simplifies our analysis (we discuss the
implications of this choice further below). Since the only point where h is nonsmooth
is the minimizer, it also simplifies our analysis to replace the check for differentiability
in the Wolfe condition (4.3) by a termination condition. The inequality in (4.3) reduces
to t > −xk/pk for all c2 ∈ (0, 1), so the line search conditions become

A(t) : t < −2xk/pk

W (t) : t ≥ −xk/pk,

with the secant method to be terminated if the line search returns tk = −xk/pk . For the
analysis that follows, when we refer to the inexact line search we mean Algorithm 4.6
with the Armijo and Wolfe conditions redefined as above.

The behavior of the secant method is fundamentally different from that of the steep-
est descent (gradient) method even on this simple example. In both cases, the iterates
converge to zero, but, as we show below, the complexity of the secant method, mea-
sured in terms of the total number of function trials, is essentially that of a bisection
method. In contrast, using the steepest descent method, the search direction is always
pk = ±1, so the closer the iterate xk is to zero, the more bisections are required to
satisfy the Armijo condition in a single line search.

Clearly properties A and W guarantee

|xk+1| < |xk | and xk xk+1 < 0,
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providing xk �= 0 �= xk+1. The inverse Hessian approximation Hk+1 is defined by the
secant equation Hk+1 = |xk+1− xk |/2 and hence the search direction for the next line
search is

pk+1 = −|xk+1 − xk |
2

sgn(xk+1).

Thus, the iterates alternate signs, and the search direction has size half the distance
to the previous iterate. This search direction leads to the immediate satisfaction of
the Wolfe condition, but one or more bisections may be required until one is found
satisfying the Armijo condition (they all satisfy the Wolfe condition).

Now assume for convenience that H0 = 1 and x0 ∈ ( 1
2 , 1) so that x1 = x0 − 1

satisfies both conditions. It is straightforward to check that, with this initialization, the
secant method using the inexact line search algorithm on the absolute value function
| · | is equivalent to the following algorithm:

Algorithm 5.1

Initialize x0 ∈ ( 1
2 , 1) and set x1 ← x0 − 1, k ← 1.

Set z0 = x0, z1 = x1 and j ← 1. Set w1 = 1.

repeat
t ← (xk + xk−1)/2
while not done

j ← j + 1
z j ← t ( j th trial point)
w j = |xk − z j | (current width of interval bracketing zero)
if |t | < |xk |

done← true
else

t ← (xk + t)/2
end(while)
k ← k + 1
xk ← t (kth point satisfying Armijo condition)
if xk = 0, stop

end(repeat)

The points {xk} are those where the Armijo condition is satisfied: these are a subse-
quence of all trial points {z j }. Furthermore, it is easy to check that the interval lengths
w j = |xk − z j | computed inside the while loop are precisely 21− j , a sequence con-
verging to zero with Q-linear rate 1

2 . Since xk and z j have opposite sign within the
while loop, we have |z j | < w j , and it follows that the sequence of all function trial
values |z j | converges to zero with R-linear rate 1

2 .
A more detailed analysis [31] shows that the process just described is equivalent to

computing an “alternating binary expansion” of the initial point x0. This is summarized
in the following result.

Theorem 5.2 Any number x ∈ R++ has a unique alternating binary expansion as the
sum of a finite or infinite alternating series of strictly decreasing powers of two: that
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is, there is a unique number m = 0, 1, 2, . . . or∞ and a unique sequence of integers
a0 < a1 < a2 < · · · (with m + 1 terms if m <∞) such that

x =
m∑

j=0

(−1) j 2−a j .

Furthermore, applying the secant method to minimize the absolute value function,
using the inexact line search, with arbitrary x0 and H0 = 1, generates the iterates

xk =
m∑

j=k

(−1) j 2−a j for all integers k ≤ m. (5.3)

Calculating the iterate x1 takes 1 + |a0| trials in the line search. For all k < m,
given the iterate xk , calculating the subsequent iterate xk+1 takes ak − ak−1 trials. If
the alternating binary expansion is finite (that is, m < ∞), then the secant method
terminates at zero after finitely many function trials. Otherwise, the sequence of all
function trial values converges to zero with R-linear rate 1

2 .

As an example, consider the initial point

x0 = 4

7
= 1− 1

2
+ 1

8
− 1

16
+ · · · =

∞∑
r=0

(2−3r − 2−3r−1)

After one trial in the line search, we arrive at the point x1 = −3/7. One more trial takes
us to the point x2 = 1/14. The next line search takes two trials before terminating at
the point x3 = −3/56. This pattern now repeats: the line search between

x2 j = 4

7 · 8 j
and x2 j+1 = − 3

7 · 8 j
for j = 1, 2, 3, . . .

takes just one trial, but from x2 j+1 to x2 j+2 takes two trials. It is easy to confirm that
this is exactly the behavior predicted by Theorem 5.2.

Thus, for any initial point x0 ∈ ( 1
2 , 1), after ak trials the secant method guarantees

an error less than 2−ak , and hence the error is reduced to ε > 0 after about log2(1/ε)
trials. By contrast, it is easy to check that steepest descent on f (x) = |x |, starting with
x0 = 2

3 , needs k(k + 1)/2 trials to reduce the error to 21−k/3: consequently, reducing
the error to ε requires about (log2(1/ε))

2/2 trials.
It is interesting to briefly consider a “tilted” variant of the absolute value function

defined by

f (x) = max{x,−ux} (x ∈ R)

for a given parameter u > 0. When compared with the absolute value, a striking dif-
ference emerges: as we let u become large, the Armijo parameter c1 becomes crucially
important. Consider first the case where we apply the secant method with the inexact
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line search to f , with the Armijo parameter c1 = 0 as above. Then, an informal anal-
ysis and supporting numerical experiments [31] suggest that if the method does not
terminate at zero, it generates a sequence of function trial values converging to zero
with R-linear rate r(u) satisfying

log2 r(u) ∼ − 1

log2 u
as u →+∞.

A very condensed explanation is as follows. Assume that xk > 0. Then, after of the
order of log2 u trials, the ratio xk+2/xk may be close to 1

2 , giving a poor convergence
rate.

However, restoring the Armijo parameter c1 to a more standard strictly positive
value avoids this slow asymptotic behavior for large u for the following simple reason.
The Armijo condition requires

xk+2 < −uxk+1 − c1u(xk+2 − xk+1)

from which we deduce

xk+2 <
1+ c1

1+ c1u
(−uxk+1) <

1+ c1

1+ c1u
xk .

Thus, for large u and fixed c1 > 0, the ratio xk+2/xk has an upper bound behaving
like 1

u .

5.2 Experiments with n > 1

It would be interesting to extend the analysis of Sect. 5.1 to the norm function for
n > 1, but this seems difficult. Numerical experiments indicate, however, that similar
results hold. Figure 3 shows the behavior of BFGS with the inexact line search on
f = ‖ · ‖ when n is varied. The left panel shows all function values computed by the
algorithm, including trial values in the line search, for typical runs with n = 1, 2, 4 and
8. The sequences of function trial values appear to be R-linear: in terms of a semi-log
plot such as this, the convergence of a sequence is R-linear with rate r̃ if log10 r̃ is
the infimum of the slopes of all lines that bound the points from above. However, our
real interest is in the rate of convergence of those function values that are accepted
by the line search, taking into account nonetheless the number of function evaluations
required by the line search: this rate is r if log10 r is the infimum of the slopes of all
lines bounding the points corresponding to accepted function values from above. We
see from the figure that, for these sequences, the rates r̃ and r are approximately equal.
For this reason we estimate the convergence rate of the function trial values using a
least squares fit to the pairs (νk, fk), where fk = ‖xk‖ is the function value at the end
of the kth line search and νk is the cumulative number of function trials up to that point.

The right panel of Fig. 3 shows the estimated linear convergence rates r com-
puted in this way, averaged over 10 runs, plotting − log2(1− r) against log2(n). The
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Fig. 3 BFGS with the inexact line search on f (x) = ‖x‖ for varying n. Left typical runs with n = 1, 2, 4, 8
showing all function trial values. Right plots − log2(1− r), where r is the average observed convergence
rate with respect to the number of function trials, against log2(n)

observed convergence rates are remarkably consistent and we see that r is approxi-
mately 1−1/(2n). It is interesting to compare this to the convergence rate with respect
to the number of exact line searches for the same problem, which was observed from
Fig. 1 to be somewhat greater than 1− 1/

√
2n. The discrepancy between these rates

is due to the fact that the average number of function trials needed in an inexact line
search grows with n, as can be seen in the left panel of Fig. 3.

For more details on how the experiments were carried out, see the next section.

6 Practical experience

In this section we briefly discuss our practical experience with the BFGS method
applied to nonsmooth problems.

6.1 Implementing the inexact line search

For structured functions and initial conditions, the line search might indeed encounter
points where h is not differentiable, but in practice this is very unlikely as long as the
algorithm is initialized randomly. In any case, in the presence of rounding error, for all
but the simplest functions it makes little sense to attempt to check whether either f or h
is differentiable at a point, and our line search implementation is based on the assump-
tion that f and therefore also h is differentiable at every point where it is evaluated. For
the same reason, while in principle traditional methods for nonsmooth optimization
compute subgradients instead of gradients in the nondifferentiable case, in practice
they almost always return gradients. Thus, despite the theoretical difference between
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our line search and more traditional ones, there is virtually no practical difference, and
the result is that our line search behaves like the one in [26] in practice.

If the line search is unable to satisfy the Armijo and Wolfe conditions within a
prescribed number of trials, or if the computed value h′(0) = ∇ f (xk)

T pk is nonnega-
tive, we say that Algorithm 2.1 breaks down (in practice). Although in principle such
breakdown might occur because f is not differentiable at xk , in practice breakdown
seems to simply be a consequence of the limitations of machine precision.

The results reported here use the value zero for the Armijo parameter c1, but they
are essentially the same when c1 is set to a small positive value. We used the value
1/2 for the Wolfe parameter c2.

6.2 An example: minimizing a product of eigenvalues

We have found that the BFGS algorithm with the inexact line search converges consis-
tently to Clarke stationary points (usually, local minimizers) on many different kinds
of examples [31]. Here we present results for one illustrative example: an entropy
minimization problem arising in an environmental application [2]. Let SN denote the
space of real symmetric N by N matrices. The function f to be minimized is

f (X) = log EK (A ◦ X) ,

where EK (X) denotes the product of the K largest eigenvalues of a matrix X in SN , A
is a fixed matrix in SN , and ◦ denotes the Hadamard (componentwise) matrix product,
subject to the constraints that X is positive semidefinite and has diagonal entries equal
to 1. If the requirement were to minimize the sum of the largest eigenvalues instead
of the product, this would be equivalent to a semidefinite program, but the product of
the largest K eigenvalues is not convex. This problem was one of the examples in [7];
in the results reported there, the objective function was defined without the logarithm
and we enforced the semidefinite constraint by an exact penalty function. Here, we
impose the constraint by the substitution X = V V T , where V is square. The constraint
on the diagonal of X then translates to a requirement that the rows of V have norm
one, a constraint that can be removed from the problem by replacing each row v of
V by v/‖v‖. Thus, the problem is converted to the unconstrained minimization of a
nonsmooth function f over Rn with n = N 2 (the variable being x = vec(V ), the
vector representation of the matrix V ). In principle, one might expect multiple local
minimizers with different minimal values, but at least with the data we have been
using, this rarely happens.

Let λi (Y ) denote the i th largest eigenvalue of Y ∈ SN and, for given Y , define an
active set I (Y ) = {i : λi (Y ) = λK (Y )}. It can be verified that EK is partly smooth at Y
with respect to the manifold M̃(Y ) = {Z ∈ SN : λi (Z) = λK (Z) ⇐⇒ i ∈ I (Y )}.
It is known from matrix theory that the codimension of M̃(Y ) is m(m + 1)/2− 1,
where m is the multiplicity |I (Y )| [24, p. 141]. Now consider the manifold in Rn

defined by

M(x̄) =
{

x : A ◦ vec(x)vec(x)T ∈ M̃
(

A ◦ vec(x̄)vec(x̄)T
)}
,
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where x̄ is a minimizer of f . To conclude that f is partly smooth with respect
to M at x̄ , and that the codimension of M is m(m + 1)/2− 1, where m =
|I (A ◦ vec(x̄)vec(x̄)T )|, requires a transversality condition [28]; let us assume that
this holds. For the results reported below, A is set to the leading N × N submatrix
of a 63× 63 covariance matrix [2], scaled so that the largest entry is 1, with N = 20
(n = 400) and K = 10.

Figure 4 shows results obtained by running BFGS with the inexact line search 10
different times, each with both x and H initialized randomly, and with each run termi-
nated when the algorithm breaks down (in practice). All 10 runs generated the same
final value of f to about 14 digits (−4.3793775559927), with the function trial values
converging R-linearly at a consistent rate. Repeated experiments with other problem
variants and other nonsmooth optimization methods indicate that this value is, almost
certainly, a locally minimal value, although all we can conclude from an a posteriori
analysis (see the stopping criterion in the next section) is that the final value of x is
approximately Clarke stationary. At the top left of Fig. 4, the values of f after each
line search are plotted, shifted by fopt, an estimate of the optimal value defined to be
the best value found in these 10 runs; the apparent superlinear convergence of f to
the optimal value in one run is an artifact of this choice. At the top right, we see the
eigenvalues of A ◦ X as a function of the iteration count. Observe that after just a
few iterations, λ6(A ◦ X), . . . , λ14(A ◦ X) have coalesced together to plotting accu-
racy (λ15, λ16 and λ17 are slightly smaller). This computed multiplicity–9 eigenvalue
suggests that the manifold M(x̄) has codimension 9(10)/2 − 1 = 44; if so, this is
the dimension of the V-space at x̄ . Indeed, this is confirmed by the bottom left plot:
exactly 44 eigenvalues of the inverse Hessian approximation matrix Hk converge to
zero! Furthermore, at the bottom right we see the function f − fopt plotted along
lines through the computed minimizer xopt parallel to the eigenvectors corresponding
to the j th smallest eigenvalue of the final computed H , for j = 10, 20, . . . , 60. We
see that f is V-shaped in the first four of these directions and U-shaped in the last
two, again consistent with our conclusion that the V-space has dimension 44. This
is compelling evidence that BFGS automatically identifies the U and V-spaces at the
local minimizer, without any a priori information about the manifold M.

Most important of all is the observation that, regardless of the initial conditions,
BFGS generates sequences of function values that converge to Clarke stationary values
and with final iterates x which are extremely close to points where f is not differentia-
ble. Indeed, all 10 runs produce a final point x for which A ◦ X has an eigenvalue with
multiplicity 9 to about 14 digits (nearly the full precision of 16 digits carried by IEEE
floating point arithmetic). Steepest descent generates sequences of function values for
which the final iterates x are also very close to points where f is not differentiable,
but neither the final function values, nor the multiplicity of the eigenvalues of the
final A ◦ X , agree from one run to another, indicating that, as mentioned in Sect. 1,
steepest descent routinely generates sequences that converge to points at which f is
not differentiable but which are not Clarke stationary.

For an example for which BFGS finds Clarke stationary points that are not neces-
sarily local minimizers, see [17,20].
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Fig. 4 Results for minimizing the eigenvalue product, N = 20, n = 400, K = 10. Top left the function
values after each line search for 10 randomly generated starting points, shifted by fopt , the minimal value
found. Top right eigenvalues of A ◦ X after each line search for one run. Bottom left eigenvalues of Hk for
same run: 44 of these converge to zero. Bottom right plots f − fopt along a line xopt+ tw, where xopt is the
computed minimizer andw is the eigenvector of the final H associated with its j th smallest eigenvalue, for
j = 10, 20, . . . , 60. The function f is “V-shaped” along the eigenvectors associated with tiny eigenvalues
of H , and “U-shaped” along the others

6.3 A stopping condition

It might be thought that a disadvantage of using a quasi-Newton method for non-
smooth optimization is that there is no obvious way to decide how to terminate the
method: ill-conditioning of Hk proves nothing and computing the eigenvalues or con-
dition number of Hk would add far too much computational overhead to the iteration.
However, the following simple approach can be used to detect approximate Clarke
stationarity. Let J be a positive integer and let τx and τd be two small positive toler-
ances, all specified by the user or given default values. Define j0 = 1 and G0 = {∇ f0}
and, for k = 1, 2, . . . , define
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jk = 1, Gk = {∇ fk} if ‖xk − xk−1‖ > τx ,

jk = jk−1 + 1, Gk =
{∇ fk− jk+1, . . . ,∇ fk

}
if ‖xk − xk−1‖ ≤ τx and jk−1 < J,

jk = J, Gk = {∇ fk−J+1, . . . ,∇ fk} if ‖xk − xk−1‖ ≤ τx and jk−1 = J.

By construction, Gk is a set of jk ≤ J gradients evaluated at points near xk . The
smallest vector in the convex hull of this set,

dk = arg min{‖d‖ : d ∈ conv Gk},

is obtained (as in bundle methods) by solving a convex quadratic program in jk vari-
ables, an inexpensive computation if jk is small and in any case one whose cost can be
reduced by exploiting the information available from iteration k − 1. Algorithm 2.1
may then be terminated if ‖dk‖ ≤ τd , as this inequality is an approximate Clarke sta-
tionarity condition when τx and τd are small. Note that if J = 1, the test reduces to
‖∇ fk‖ ≤ τd , the usual stopping condition in practice when f is smooth.

Suppose f is partly smooth at a Clarke stationary point to which the iteration con-
verges. If J is larger than the dimension of the V-space at the minimizer, we typically
find that the termination condition just described is satisfied eventually as long as τx

and τd are not so small that breakdown (in practice) occurs first. Appropriate choices
for J, τx and τd are problem dependent. For example, consider the eigenvalue product
example of Sect. 6.2, with n = 400, for which we argued that the dimension of the
V-space at the minimizer found by BFGS is 44. Using J = 50 and τx = τd = 10−4,
BFGS typically terminates successfully in 600–1,000 iterations.

6.4 Software

Our Matlab package hanso (Hybrid Algorithm for Non-Smooth Optimization) is
based on BFGS and freely available.1 Version 2.0 of hanso uses the stopping crite-
rion just described. If the algorithm breaks down (in practice) without satisfying the
desired termination condition, the user has the option to continue the optimization
using the gradient sampling method of [7]. The gradient sampling method is far more
computationally intensive than BFGS, but it does enjoy convergence guarantees with
probability one [7,23].

Our BFGS implementation in hanso has been used to solve a variety of practical
nonsmooth problems, such as a condition geodesic problem [3] and shape optimization
for spectral functions of Dirichlet-Laplacian operators [40].

Together with D. Henrion, M. Millstone and S. Gumussoy, we have also developed
a more specialized package hifoo (H-Infinity Fixed-Order Optimization) [5,14], also
freely available.2 Its purpose is to design low-order feedback controllers for linear
dynamical systems. Hifoo sets up certain small-dimensional but challenging non-
smooth, nonconvex optimization problems and then solves them by calling hanso .

1 http://www.cs.nyu.edu/overton/software/hanso/.
2 http://www.cs.nyu.edu/overton/software/hifoo/.
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The effectiveness of hifoo in designing low-order controllers is benchmarked in
[1,14–16]. Recently published applications of hifoo include design of teleoperations
for minimally invasive surgery [11], design of an aircraft nose landing gear steering
system [41], design of an aircraft controller for improved gust alleviation and passen-
ger comfort [50], robust controller design for a proton exchange membrane fuel cell
system[49], design of power systems controllers [12] and design of winding systems
for elastic web materials [21].

7 A challenge

This paper raises far more questions than it answers. We hope that we have made a
convincing case that quasi-Newton methods are practical and effective methods for
nonsmooth optimization, and we have tried to give insight into why they work so well,
but a general analysis seems to be difficult.

In our experience with functions with bounded sublevel sets, BFGS essentially
always generates function values converging linearly to a Clarke stationary value,
with exceptions only in cases that we attribute to the limits of machine precision.
We speculate that, for some broad class of reasonably well-behaved functions, this
behavior is almost sure. In framing our challenge, let us first rule out the worst kinds
of pathology by considering objective functions whose graphs stratify into analytic
manifolds. (A variety of dynamical systems associated with such functions are known
to behave well.) To be concrete, we restrict our attention to the class of semi-alge-
braic functions. Now let us consider appropriately random initial data: the precise
distributions are irrelevant, providing they are absolutely continuous with respect
to Lebesgue measure. Again to be concrete, let us assume a normally distributed
initial point and an initial positive definite inverse Hessian approximation sampled
from a Wishart distribution. We now consider the BFGS method, in exact arithmetic,
using the inexact line search with any fixed Armijo and Wolfe parameters satisfying
0 < c1 < c2 < 1. Theorem 4.7 guarantees that the line search must always terminate
because of the semi-algebraic assumption, but it does not guarantee that f is differ-
entiable at the new iterate xk+1 (only that its derivative along the previous direction
pk exists).

Challenge 7.1 Let f be locally Lipschitz and semi-algebraic with bounded sublevel
sets. Prove or disprove that, if x0 and H0 are chosen randomly as just described, then
the following propositions hold with probability one:

1. Algorithm 2.1 using the BFGS update (2.2) and the line search of Algorithm 4.6
does not break down (in theory) and does not terminate at a smooth stationary
point.

2. Any cluster point x̄ of the sequence {xk} is Clarke stationary, that is 0 ∈ ∂ f (x̄).
3. The sequence of all function trial values converges to f (x̄) R-linearly.
4. Let Wk be the subspace spanned by the eigenvectors associated with the eigen-

values of Hk that converge to zero, and suppose that xk converges to a point x̄
where f is partly smooth with respect to a manifold M. Then Wk converges to the
V-space of f at x̄ with respect to M, or equivalently, its orthogonal complement
converges to the U-space, that is the tangent space to M at x̄ .
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