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a b s t r a c t

We discuss two nonsmooth functions on Rn introduced by Nesterov. We show that the
first variant is partly smooth in the sense of Lewis and that its only stationary point
is the global minimizer. In contrast, we show that the second variant has 2n−1 Clarke
stationary points, none of them local minimizers except the global minimizer, but also that
its only Mordukhovich stationary point is the global minimizer. Nonsmooth optimization
algorithms frommultiple starting points generate iterates that approximate all 2n−1 Clarke
stationary points, not only the global minimizer, but it remains an open question as to
whether the nonminimizing Clarke stationary points are actually points of attraction for
optimization algorithms.

Published by Elsevier Ltd

1. Introduction

In 2008, Nesterov [1] introduced the following smooth (differentiable, in fact polynomial) function on Rn:

f̃ (x) =
1
4
(x1 − 1)2 +

n−1−
i=1

(xi+1 − 2x2i + 1)2.

The only stationary point of f is the global minimizer x∗
= [1, 1, . . . , 1]T . Consider the point x̂ = [−1, 1, 1, . . . , 1]T and the

manifold

M = {x : xi+1 − 2x2i + 1 = 0, i = 1, . . . , n − 1}

which contains both x∗ and x̂. For x ∈ M,

xi+1 = 2x2i − 1 = T2(xi) = T2i(x1), i = 1, . . . , n − 1,

where Tk(x) denotes the kth Chebyshev polynomial of the first kind [2, Section 2.4].
The function f̃ is the sum of a quadratic term and a nonnegative sum whose zero set is the manifold M. Minimizing

f̃ is equivalent to minimizing the first quadratic term on M. Standard optimization methods, such as Newton’s method
and the BFGS quasi-Newton method, when applied to minimize f̃ and initiated at x̂, generate iterates that, as in the well
known Rosenbrock example [3] and its extensions [4], approximately ‘‘track’’ M to approach the minimizer. The iterates
do not track M exactly, but because they typically follow this highly oscillatory manifold fairly closely, the tracking process
requires many iterations. To move from x̂ to x∗ along M exactlywould require xn to trace the graph of the 2n−1th Chebyshev
polynomial, which has 2n−1

− 1 extrema in (−1, 1), as x1 increases from −1 to 1. Hence, f̃ is a challenging test problem for
optimization methods.
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Fig. 1. Contour plots for Nesterov’s first (left) and second (right) non-smooth Chebyshev–Rosenbrock functions f̂ and f respectively, with n = 2. Points
connected by line segments show the iterates generated by the BFGS method (see Section 3) initialized at 7 different randomly generated starting points
(iterates plotted later may overwrite those plotted earlier). For the first variant f̂ , convergence always takes place to the only Clarke stationary point: the
global minimizer x∗

= [1, 1]T . For the second variant f , some runs of BFGS generate iterates that approximate the nonminimizing Clarke stationary point
[0, −1]T while others converge to the minimizer [1, 1]T .

Nesterov also introduced two nonsmooth variants of f̃ , the first being

f̂ (x) =
1
4
(x1 − 1)2 +

n−1−
i=1

|xi+1 − 2x2i + 1|. (1)

A contour plot of this function when n = 2 is shown on the left side of Fig. 1. Again, the unique global minimizer is x∗. Like
f̃ , the function f̂ is the sum of a quadratic term and a nonnegative sum whose zero set is the manifold M, so, as previously,
minimizing f̂ is equivalent to minimizing the first quadratic term on M, but unlike f̃ , the function f̂ is not differentiable at
points in M. However, as we show in the next section, f̂ is partly smooth with respect to M, in the sense of [5], at points in
M. It follows that, like f̃ , the function f̂ has only one stationary point — the global minimizer x∗ —where by stationary point
we mean both in the sense of Clarke and of Mordukhovich.

The second nonsmooth variant is

f (x) =
1
4
|x1 − 1| +

n−1−
i=1

|xi+1 − 2|xi| + 1|. (2)

Again, the unique global minimizer is x∗. Consider the set

S = {x : xi+1 − 2|xi| + 1 = 0, i = 1, . . . , n − 1}. (3)

Minimizing f is equivalent to minimizing its first term on S. Like M, the set S is highly oscillatory, but it has ‘‘corners’’: it
is not a manifold around any point x where any of the components x1, . . . , xn−1 vanishes. For example, consider the case
n = 2, for which a contour plot is shown on the right side of Fig. 1. It is easy to verify that the point [0, −1]T is Clarke
stationary (zero is in the convex hull of gradient limits at the point), but not a local minimizer ([1, 2]T is a direction of linear
descent from [0, −1]T ). We will show in the next section that, in fact, f has 2n−1 Clarke stationary points, that the only local
minimizer is the global minimizer x∗, and furthermore that the only stationary point in the sense of Mordukhovich is x∗.

In the next section,wedefine stationarity in both senses andpresent themain results. In Section 3,we report onnumerical
experiments showing the behavior of nonsmooth minimization algorithms on these functions.

2. Main results

Before stating our main results, we will need the following well-known definitions. The Clarke subdifferential or
generalized gradient [6] of a locally Lipschitz function on a finite-dimensional space can be defined as follows [7, Theorem
6.2.5]. Let ∇ denote gradient.

Definition 1 (Clarke Subdifferential). Consider a function φ : Rn
→ R and a point x ∈ Rn, and assume that φ is locally

Lipschitz around x. Let G ⊂ Rn be the set of all points where φ is differentiable, and A ⊂ Rn be an arbitrary set with measure
zero. Then the Clarke subdifferential of φ at x is

∂Cφ(x) = conv


lim
m→∞

∇φ(xm) : xm → x, xm ∈ G, xm ∉ A


. (4)
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Note that by Rademacher’s Theorem [8], locally Lipschitz functions are differentiable almost everywhere so A can be chosen
as the set of points at which φ is not differentiable.

As expounded in [9], the Mordukhovich [10] subdifferential is defined as follows.

Definition 2 (Mordukhovich Subdifferential). Consider a function φ : Rn
→ R and a point x ∈ Rn. A vector v ∈ Rn is a regular

subgradient of φ at x (written v ∈ ∂̂φ(x)) if

lim inf
z→x
z≠x

φ(z) − φ(x) − ⟨v, z − x⟩
|z − x|

≥ 0,

where ⟨· , ·⟩ is the usual inner product on Rn. A vector v ∈ Rn is aMordukhovich subgradient of φ at x (written v ∈ ∂Mφ(x))
if there exist sequences xm and vm in Rn satisfying

xm → x
φ(xm) → φ(x)

vm
∈ ∂̂φ(xm)

vm
→ v.

We say that φ is Clarke stationary at x if 0 ∈ ∂Cφ(x). Similarly, φ is Mordukhovich stationary at x if 0 ∈ ∂Mφ(x). For a locally
Lipschitz function φ, we have [9, Theorem 8.49]

∂Cφ(x) = conv {∂Mφ(x)}. (5)

The following simple example illustrates equation (5).

Example 1. For g(x) = |x1|−|x2|, x ∈ R2, explicit formulas for the Clarke andMordukhovich subdifferentials can be derived
at x = [0, 0]T . Using Definitions 1 and 2, a straightforward computation leads to

∂Cg([0, 0]T ) = [−1, 1] × [−1, 1] and ∂Mg([0, 0]T ) = [−1, 1] × {−1, 1},

where the former subdifferential is the convex hull of the latter one.

We will need the concept of regularity (also known as subdifferential regularity or Clarke regularity) [9], which can be
characterized for locally Lipschitz functions as follows [11, Theorem 6.10].

Definition 3 (Regularity). A locally Lipschitz function φ : Rn
→ R is regular at a point x if and only if its ordinary directional

derivative satisfies

φ′(x; d) = lim sup
z→x

⟨∇φ(z), d⟩

for every direction d ∈ Rn.

One consequence of regularity of φ at a point x is that ∂Cφ(x) = ∂Mφ(x) [12, Proposition 4.1(iii)] and another is that the
Clarke stationarity condition 0 ∈ ∂Cφ(x) is equivalent to the first-order optimality condition φ′(x, d) ≥ 0 for all directions
d [13, Section 14.1].

A property that will be central in our analysis is partial smoothness [5].

Definition 4. A function φ is partly smooth at x relative to a manifold X containing x if

1. its restriction to X, denoted by φ|X, is twice continuously differentiable at x,
2. at every point close to x ∈ X, the function φ is regular and has a subgradient,
3. par {∂Mφ(x)}, the subspace parallel to the affine hull of the subdifferential of φ at x, is the normal subspace to X at x, and
4. the subdifferential map ∂Mφ is continuous at x relative to X.

We illustrate the definition by proving that f̂ is partly smooth.

Lemma 1. Nesterov’s first nonsmooth Chebyshev–Rosenbrock function f̂ , defined in (1), is partly smooth with respect to M at all
points in M.

Proof. For each i ∈ {1, . . . , n − 1}, consider the function hi(x) = |xi+1 − 2x2i + 1| and the manifold Mi := {x : Hi(x) :=

xi+1 − 2x2i + 1 = 0}. By the chain rule [9, Proposition 10.5], hi is globally regular as a composition of two regular functions
and we have

∂Mhi(x) = ∇Hi(x)


∂M
| · |


(xi+1 − 2x2i + 1)
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for any x ∈ Rn. We have the normal spaceNMi = Range(∇Hi(x)) [9, Example 6.8] which is clearly parallel to the subdifferen-
tial ∂Mhi(x). Since hi|Mi = 0 is smooth and ∂Mhi is continuous at x relative to Mi, it follows from Definition 4 that hi is partly
smooth with respect to the manifold Mi. We conclude from [5, Corollary 4.6 and 4.7] that f̂ (x) =

1
4 (x1 − 1)2 +

∑n−1
i=1 hi(x)

is partly smooth with respect to the manifold M = ∩
n−1
i=1 Mi at all points in M. �

It follows that f̂ has only one stationary point.

Theorem 1. Nesterov’s first nonsmooth Chebyshev–Rosenbrock function f̂ is Clarke stationary or Mordukhovich stationary only
at the unique global minimizer x∗

= [1, 1, . . . , 1]T .

Proof. If x ∉ M, then f̂ is smooth and nonstationary at x as the partial derivative of f̂ with respect to xn is ±1. On the other
hand, if x ∈ M, then the restricted function f̂|M =

1
4 (x1 − 1)2 is smooth and has a critical point only at the global minimizer

x∗. If x ∈ M and x ≠ x∗, it follows from [5, Proposition 2.4] that 0 ∉ aff ∂M f̂ (x). Thus, 0 ∉ ∂M f̂ (x). By regularity, we have
∂C f̂ (x) = ∂M f̂ (x) and the result follows. �

The main results of the paper concern Nesterov’s second nonsmooth example. For this we will need the usual sign
function:

sign(x) =

1 : x > 0,
0 : x = 0,
−1 : x < 0.

We start by stating a simple lemma.

Lemma 2. Let S be defined as in (3). There are 2n−1
− 1 points in S such that xj = 0 for some j < n. Let x̄ be such a point. Then

x̄i takes non-integer values between −1 and 1 for i < j, x̄i = 0 for i = j, x̄i = −1 for i = j + 1 and x̄i = 1 if n ≥ i > j + 1. In
particular, x̄1 < 1 (with x̄1 = 0 if j = 1).

Proof. For j < n fixed, it is easy to see that there are 2j−1 points in S such that xj = 0. Summing over j, we obtain
2n−1

− 1 =
∑n−1

j=1 2j−1 points. The rest of the proof is straightforward. �

Theorem 2. Nesterov’s second nonsmooth Chebyshev–Rosenbrock function f , defined in (2), is Clarke stationary at the 2n−1
− 1

points in the set S with a vanishing xj for some j < n.

Proof. Let x̄ be such a point. Then, using Lemma 2, we see that around x̄ the function |x1−1|
4 is equal to 1−x1

4 and furthermore
x̄i ≠ 0 if i ≠ j. These observations allow us to write f in a simpler form eliminating most of the absolute values. We first
prove the case j = n − 1. We will show that in an arbitrarily small neighborhood of x̄ the gradient vector (if defined) can
take arbitrary signs in each coordinate. This will ensure that 0 ∈ ∂C f (x̄) by (4).

Around x̄, the function f (x) may be rewritten as

f (x) =
1 − x1

4
+ |x2 + 2c1x1 + 1| + · · · + |xn−1 + 2cn−2xn−2 + 1| + |xn − 2|xn−1| + 1| (6)

where ci = −sign(x̄i), i = 1, 2, . . . , n − 2, depend only on the point x̄ and are fixed, (note that x̄i ≠ 0 for i < j = n − 1).
Since x̄ ∈ S and x̄n−1 = 0, all the absolute value terms appearing in (6) are equal to 0 at x̄. By the continuity of f at x̄, it is
possible to find points x arbitrarily close to x̄ such that each of the absolute value terms evaluated at x has arbitrary sign and
at those points

∇f (x) =

[
−

1
4

+ 2c1d1, d1 + 2c2d2, . . . , dn−2 + 2cn−1dn−1, dn−1

]T

where cn−1 := −sign(xn−1) and each of d1, d2, . . . , dn−1 can be chosen to be +1 or −1 as desired. Hence, it is possible to
have ∇f (x) in any of the 2n quadrants of Rn. Consequently, 0 lies in the convex combination of these gradient vectors and
we conclude from (4) that 0 ∈ ∂C f (x̄).

The case j < n − 1 is handled similarly. For a choice of x around x̄, we get

∇f (x) =

[
−

1
4

+ 2c1d1, d1 + 2c2d2, . . . , dj−1 + 2cjdj, dj + 2dj+1, dj+1 − 2dj+2, . . . , dn−1

]T

where ci = −sign(xi), i = 1, 2, . . . , j−1, are fixed (when j > 1) and cj = −sign(xj), d1, d2, . . . , dn−1 are free parameters to
choose from {−1, 1}. Suppose dj = d0j , dj+1 = d0j+1, . . . , dn−1 = d0n−1 are fixed. By choosing cj, d1, . . . , dj−1 appropriately,
the signs of the first j components of ∇f (x) vector can be chosen to be positive or negative. Thus, by convexity,

0, . . . , 0, d0j + 2d0j+1, d
0
j+1 − 2d0j+2, . . . , d

0
n−1

T
∈ ∂C f (x̄).
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Choosing dj = −d0j , dj+1 = −d0j+1, . . . , dn−1 = −d0n−1, we have
0, . . . , 0, −(d0j + 2d0j+1), −(d0j+1 − 2d0j+2), . . . ,−d0n−1

T
∈ ∂C f (x̄).

and so by convexity 0 ∈ ∂C f (x̄), completing the proof. �

The following theorem characterizes all the stationary points of f in the sense of both subdifferentials.

Theorem 3. Nesterov’s second nonsmooth Chebyshev–Rosenbrock function f is Mordukhovich stationary only at the global
minimizer x∗

= [1, 1, . . . , 1]T . Furthermore, f is Clarke stationary only at x∗ and the 2n−1
− 1 points in S with a vanishing

xj for some j < n. None of the Clarke stationary points of f except the global minimizer are local minimizers of f and there exists
a direction of linear descent from each of these points.

Proof. If x ∉ S, f is smooth at x and we have 0 ∉ ∂M f (x) = ∂C f (x) = {∇f (x)} since the partial derivative of f with respect
to xn at x is ±1.

When x = x∗
∈ S, we have 0 ∈ ∂̂ f (x) ⊂ ∂M f (x) ⊂ ∂ f C (x). If x ∈ S, x ≠ x∗ (x1 ≠ 1) and xj ≠ 0 for j = 1, 2, . . . , n − 1,

then the set S is amanifold around x. The function f is partly smoothwith respect to S at x, with f|S(x) =
|1−x1|

4 , the restriction
of f to S, smooth around x, and x is not a critical point of f|S . It follows from [5, Proposition 2.4] that 0 ∉ aff {∂M f (x)}. This
implies directly that 0 ∉ ∂M f (x) and 0 ∉ ∂C f (x) = conv {∂M f (x)}, using (5).

The remaining case is when x ∈ S is such that xj = 0 for some j < n. We have x1 < 1. Let δ > 0 be small and xδ be the
unique point near x such that xδ

∈ S and xδ
1 = x1 + δ. It follows from the definition of S that xδ

= x + δv where v is a fixed
vector independent of δ > 0 for δ sufficiently small. Since f|S(x) =

1−x1
4 around x, we have f (xδ) = f (x+ δv) = f (x)−

1
4δ <

f (x) which shows that v is a direction of linear descent. Furthermore, we have 0 ∉ ∂̂ f (x) since the existence of the descent
direction at x̄ implies

lim inf
z→x̄
z≠x

f (z) − f (x)
|z − x|

≤ lim inf
δ↓0

f (x + δv) − f (x)
δ|v|

= −
1

4|v|
< 0.

We want to prove that 0 ∉ ∂M f (x). This requires an investigation of the regular subdifferential ∂̂ f (y) for y near x. Let y
be a point near x, y ≠ x. We have xj = 0, so we distinguish two cases: y ∉ S, {y ∈ S and yj ≠ 0}. (If y ∈ S and yj = 0, then,
for y to be near x, we would need y = x.)

1. y ∉ S: ∇f (y) exists, we have ∂̂ f (y) = {∇f (y)} and the n-th coordinate of ∇f (y) is ±1. This shows that there exists no
sequence ym → x such that ym ∉ S for allm with ∂̂ f (ym) = {∇f (ym)} ∋ vm

→ 0.
2. y ∈ S and yj ≠ 0: We have, for y sufficiently close to x, that yk ≠ 0 for k = 1, . . . , n and

S = {x : Fi(x) = 0, i = 1, . . . , n − 1}

where Fi(x) = xi+1 − 2|xi| + 1 is smooth at y. Hence, S is a manifold around y and it is easy to see that f is partly smooth
at ywith respect to S. The restricted function f|S(x) =

1−x1
4 is smooth at y and since y1 < 1, y is not a critical point of f , so

from [5, Proposition 2.4]we conclude that 0 ∉ aff {∂M f (y)}which leads to 0 ∉ ∂̂ f (y). Furthermore, by [5, Proposition 2.2],
we have

∂̂ f (y) ⊂ ∇g(y) + NS(y) (7)

where g(x) =
1−x1
4 and NS(y) is the normal space to S at y. The normal space to S at y coincides with the normal cone to

S at y so by [9, Example. 6.8]

NS(y) = Range(∇F)

where

∇F(y)T =

[
∂Fi
∂xj

(y)
]n−1,n

i,j=1
∈ R(n−1)×n

is the Jacobian matrix. We have

∇F(y) =


−2 sign(y1)

1 −2 sign(y2)

1
. . .

. . . −2 sign(yn−1)
1

 ∈ Rn×(n−1) (8)
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and ∇g(y) = [−1/4, 0, . . . , 0]T . From (7) and (8), we see that 0 ∈ ∂̂ f (y) is possible only if [1/4, 0, . . . , 0]T ∈ NS(y). A
straightforward calculation shows that this is impossible. We conclude that 0 ∉ ∂̂ f (y). The next step is to investigate the
possible limits of vm

∈ ∂̂ f (ym) as the sequence ym ∈ S approaches x. Let ym be a sequence such that ym → x, ym ∈ S and
ym ≠ x for all m (this implies ymj ≠ 0 for all m as before). Without loss of generality, assume ymj > 0 for all m. For fixed
k ∈ {1, 2, . . . , n}, the quantity sign(ymk ) does not depend on m and is nonzero. Thus, G := ∇F(ym) does not depend on
m. Let v ∈ Rn be such that ∂̂ f (ym) ∋ vm

→ v. From (7), we have vm
= [−1/4, 0, . . . , 0]T + Gcm for some cm ∈ Rn−1.

Since vm
→ v and G has full rank, we have cm → c ∈ Rn−1 and v = [−1/4, 0, . . . , 0]T + Gc . As previously, v = 0 is

impossible.

We conclude that 0 ∉ ∂M f (x). Since we already know from Theorem 2 that 0 ∈ ∂C f (x), this completes the proof of the
theorem. �

It follows immediately from Theorem 3 that f is not regular at the 2n−1
− 1 non-locally-minimizing Clarke stationary

points of f : see the comments after Definition 3.

3. Numerical experiments

Nesterov has observed that Newton’s methodwith an inexact line search, when applied tominimize the smooth function
f̃ initiated at x̂, takes many iterations to reduce the value of the function below a small tolerance ϵ. Indeed, the number of
iterations is typically exponential in n, although quadratic convergence is observed eventually if the method is run for long
enough. Our experimental results are mainly obtained using the BFGS quasi-Newton algorithm with a line search based
on the Armijo and ‘‘Wolfe’’ conditions, a well-known method generally used to optimize smooth functions [4]. However,
as explained in [14], BFGS with the same line search is surprisingly effective for nonsmooth functions too. For the results
reported below, we used a publicly availableMatlab implementation.1

For smooth but nonconvex functions such as f̃ , there is no theorem known that guarantees that the BFGS iterates will
converge to a stationary point, and pathological counterexamples have been constructed [15,16], although, unlike f̃ , these
are not analytic. However, it is widely accepted that BFGS generally produces sequences converging to local minimizers of
smooth, nonconvex functions [17], so it is not surprising that this is the case for f̃ , with superlinear convergence to x∗ in the
limit. As with Newton’s method, many iterations are required. For n = 8, starting at x̂ and with the initial inverse Hessian
approximation H set to the identity matrix I , the BFGS method requires about 6700 iterations to reduce f̃ below 10−15, and
for n = 10, nearly 50,000 iterations are needed.

For nonsmooth functions, there is no general convergence theory for the BFGS method, but as discussed in [14], when
applied to locally Lipschitz functions themethod seems to always generate sequences of function values converging linearly
to Clarke stationary values, and our experiments confirm this observation for small n for both nonsmooth functions studied
in this paper. To apply BFGS to Nesterov’s first nonsmooth variant f̂ , we cannot use x̂ for the initial point as the method
immediately breaks down, f̂ being nondifferentiable at x̂. Instead, we initialize x randomly, retaining the identity matrix for
initializingH . The left panel of Fig. 1 shows the iterates generated by BFGS for the case n = 2 using 7 random starting points:
all sequences of iterates converge to the global minimizer x∗

= [1, 1]T . However, the accuracy to which BFGS can minimize
f̂ drops rapidly as n increases. Because of the difficulty of the problem combined with the limited machine precision, the
method breaks down, that is the line search fails to return a point satisfying the Armijo andWolfe conditions, at an iterate x
that is close to M but not very near x∗. When the calculations are carried out to higher precision, more accurate results are
obtained [18]. For example, for n = 4, using standard IEEE ‘‘double’’ precision (about 16 decimal digits), from most starting
points, BFGS reduces f̂ to final values ranging from 10−3 to 10−2, while using ‘‘double double’’ precision (about 32 decimal
digits), from the same starting points, the final values that are obtained range from 10−4 to 10−3.

For Nesterov’s second nonsmooth variant f , we find that BFGS generates iterates approximating Clarke stationary points,
but not necessarily the minimizer x∗. The iterates for the case n = 2, again for 7 randomly generated starting points, are
shown in the right panel of Fig. 1. Most of the runs converge to the minimizer [1, 1]T , but some terminate near the Clarke
stationary point [0, −1]T . For n ≤ 6, given enough randomly generated starting points, BFGS finds, that is approximates
well, all 2n−1 Clarke stationary points. The left and right panels of Fig. 2 plot final values of f found by 1000 runs of BFGS
starting with random x and H = I , sorted into increasing order, for the cases n = 5 and n = 6 respectively. Most runs find
either the minimizer or one of the 2n−1

− 1 nonminimizing Clarke stationary points, although a few runs break down away
from these points. For n = 7, the method usually breaks down without finding any Clarke stationary point, presumably
because of the limitations of machine precision.

Experiments with the gradient sampling algorithm [19] and Kiwiel’s bundle code [20] give similar results. Both of these
methods have well established convergence theories ensuring convergence to Clarke stationary points. However, it remains
an openquestionwhether the nonminimizing Clarke stationary points are points of attraction for any of these algorithms. For
small n, the computations usually terminate near Clarke stationary points, because eventually rounding error prevents the

1 http://www.cs.nyu.edu/overton/software/hanso.

http://www.cs.nyu.edu/overton/software/hanso
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Fig. 2. Left: sorted final values of f for 1000 randomly generated starting points, when n = 5: BFGS finds all 16 Clarke stationary points. Right: same with
n = 6: BFGS finds all 32 Clarke stationary points.

method from obtaining a lower point in the line search. But this does not establishwhether, in exact arithmetic, themethods
would actually generate sequences converging to the nonminimizing Clarke stationary points. Indeed, experiments in [18]
suggest that the higher the precision used, themore likely BFGS is tomove away from the neighborhood of a nonminimizing
Clarke stationary point and eventually find a lower one, perhaps the minimizer.

Another observation is the difficulty of finding descent directions from the nonminimizing Clarke stationary points using
random search. Although we know that such descent directions exist by Theorem 3, numerical experiments show that
finding a descent direction by random search typically needs exponentially many trials. For example, when n = 5, usually
100,000 random trials donot suffice to find a descent direction. This illustrates the difficulty faced by anoptimizationmethod
in moving away from these points.

4. Conclusion

Nesterov’s Chebyshev–Rosenbrock functions provide very interesting examples for optimization, both in theory and in
practice. Specifically, the smooth function f̃ , the first nonsmooth function f̂ and the second nonsmooth function f are very
challenging nonconvex instances of smooth functions, partly smooth functions andnon-regular functions respectively. As far
as we know, Nesterov’s function f is the first documented case for which methods for nonsmooth optimization result in the
approximation of Clarke stationary points from which there exist directions of linear descent. This observation is primarily
due to Kiwiel [20]. Furthermore, since all first-order nonsmooth optimization methods, including bundle methods [21], the
gradient sampling method [19] and the BFGS method [14], are based on sampling gradient or subgradient information, the
results given here for f suggest that limitation of convergence results to Clarke stationary points may be unavoidable, in the
sense that one may not in general be able to expect stronger results such as convergence only to Mordukhovich stationary
points. Nonetheless, it remains an open question as to whether the nonminimizing Clarke stationary points of f are actually
points of attraction for methods using exact arithmetic.
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