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LARGE-SCALE OPTIMIZATION OF EIGENVALUES*

MICHAEL L. OVERTON?

Abstract. Optimization problems involving eigenvalues arise in many applications. Let x be
a vector of real parameters and let A(x) be a continuously differentiable symmetric matrix function
of x. We consider a particular problem that occurs frequently: the minimization of the maximum
eigenvalue of A(x), subject to linear constraints and bounds on x. The eigenvalues of A(x) are not
differentiable at points x where they coalesce, so the optimization problem is said to be nonsmooth.
Furthermore, it is typically the case that the optimization objective tends to make eigenvalues coalesce
at a solution point.

There are three main purposes of the paper. The first is to present a clear and self-contained
derivation of the Clarke generalized gradient of the max eigenvalue function in terms of a "dual
matrix." The second purpose is to describe a new algorithm, based on the ideas of a previous paper
by the author [SIAM J. Matrix Anal. Appl., 9 (1988), pp. 256-268], which is suitable for solving large-
scale eigenvalue optimization problems. The algorithm uses a "successive partial linear programming"
formulation that should be useful for other large-scale structured nonsmooth optimization problems
as well as large-scale nonlinear programming with a relatively small number of nonlinear constraints.
The third purpose is to report on our extensive numerical experience with the new algorithm, solving
problems that arise in the following application areas: the optimal design of columns against buckling;
the construction of optimal preconditioners for numerical linear equation solvers; the bounding of the
Shannon capacity of a graph. We emphasize the role of the dual matrix, whose dimension is equal to
the multiplicity of the minimal max eigenvalue. The dual matrix is computed by the optimization
algorithm and used for verification of optimality and sensitivity analysis.

Key words, nonsmooth optimization, nondifferentiable optimization, generalized gradient,
eigenvalue perturbation

AMS(MOS) subject classifications. 65F15, 65K10, 49K99, 90C26

1. Introduction. Eigenvalues of symmetric matrices play important roles in
many different areas of applied mathematics. For perhaps the large majority of true
applications, it is not the case that a fixed matrix, say A, is known, and its eigenval-
ues are needed. It is more typical that A depends on many parameters, and that the
eigenvalues are desired for many different choices of the parameters. In many cases
the choice of parameters is dictated by some optimization objective. For example,
in a control application, where the size of the largest eigenvalue represents system
stability, it may be desirable to minimize the largest eigenvalue, while in a structure
analysis application, where the smallest eigenvalue represents a buckling load, it may
be desirable to maximize the smallest eigenvalue. Other applications might have an
optimization objective that does not involve eigenvalues (e.g., cost of a material), but
include constraints on eigenvalues (e.g., ensure all eigenvalues are in a safe frequency
interval).

In our work on optimization problems involving eigenvalues, we have found it
very useful to concentrate on a particular model problem, namely, minimizing the
maximum eigenvalue of a symmetric n n matrix A(x), where A(x) depends smoothly
on a vector of parameters x E m. It is useful and not significantly more complicated
to allow the imposition of linear constraints on x. A common variation is to minimize
the maximum eigenvalue in absolute value. (We avoid the term spectral radius, since
this suggests complex eigenvalues; nonsymmetric matrices are not discussed in this
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LARGE-SCALE OPTIMIZATION OF EIGENVALUES 89

paper, but see [37].) The model problem is directly applicable to many applications,
including the first two mentioned above, while for other problems, e.g., those where
only the constraints involve the eigenvalues, it is fairly clear how the main ideas should
be extended.

The feature of eigenvalue optimization problems that makes them both particu-
larly interesting and particularly difficult to solve is that the eigenvalues of a differen-
tiable matrix function are not themselves differentiable at points where they coalesce.
Furthermore, it is often the case that the optimization objective tends to make the
eigenvalues coalesce at a solution point. For example, consider the model problem
with

x2 1 xl

The eigenvalues are

so the maximum eigenvalue is minimized by x 0. Clearly the maximum eigenvalue
is not a smooth function at x 0. More importantly, though, the max eigenvalue
function cannot be written as the pointwise maximum of two smooth functions at
x- 0; in other words, the eigenvalues themselves cannot be labeled, say, al and a2,

each a smooth function of x E 2. Thus standard minmax optimization techniques
(e.g., [31]) cannot be applied. Suggestions for transforming the problem into a stan-
dard nonlinear programming form by means of determinants have been made [18], but
these methods perform poorly [41]; for other comments on the use of determinants,
see [15].

In the example given above, the maximum eigenvalue is convex in x. This is true
in general when A depends linearly on x, since the Rayleigh principle can be used
to show that the maximum eigenvalue is a convex function of the matrix elements.
Because of this fact, it has been recognized for some time that the techniques of convex
analysis (e.g., [45]) are applicable to eigenvalue optimization problems; optimality
conditions and/or first-order algorithms for various problem classes have been given
by [7], [43], [9], [49], [19], and [1]. See also [34] and [4] for discussion of problems
arising in structural engineering.

In [36], a quadratically convergent algorithm was given to solve the model prob-
lem, using a "dual matrix" formulation of the optimality conditions to fully exploit
the nonsmooth problem structure. Two papers that greatly influenced this work were

[15] and [12]. Numerical examples were given, demonstrating quadratic convergence
to nonsmooth solutions. The assumption was made that A(x) was affine, although
it was indicated that this was not essential for the main ideas to apply. The reason
for this is that the eigenvalues are nonsmooth, nonlinear functions of the matrix, so
whether A(x) depends linearly or nonlinearly on x is not of great importance, pro-
vided A(x) is a smooth function. If A(x) is nonlinear, the maximum eigenvalue is not
necessarily convex in x, but it is a composition of a convex function with a smooth
function. Optimality conditions for nonlinear A(x), for the more general case of min-
imizing sums of largest eigenvalues (algebraically or in absolute value), are given by
[38]. These optimality conditions are derived by characterizing Clarke’s generalized
gradient [5] in terms of a dual matrix. Proofs of the local quadratic convergence of
the successive quadratic programming algorithm used in [36] are being developed in
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90 MICHAEL L. OVERTON

There are three main purposes of the present paper. The first is to present a
clear and self-contained derivation of the generalized gradient of the max eigenvalue
functional in terms of a dual matrix. An understanding of this is essential for the
appreciation of the main ideas underlying our optimization algorithms. Our second
contribution is to describe a new algorithm, based on the ideas of [36], that is suitable
for solving large-scale eigenvalue optimization problems. The third purpose of the
paper is to report on our extensive numerical experience with the new algorithm,
solving eigenvalue optimization problems that arise in three very interesting and quite
different application areas.

The paper is organized as follows. Section 2 derives the generalized gradient of
the max eigenvalue, and consequent optimality conditions for the model problem,
using the dual matrix formulation. Section 3 discusses the role of the dual matrix
in eigenvalue splitting and sensitivity analysis. Section 4 summarizes the eigenvalue
optimization algorithm of [36] and relates this to the generalized gradient derived in

2. Section 5 explains how to extend the main ideas of [36] to solve problems with
large numbers of variables. The ideas of this section should also be useful for solving
other structured large-scale nonsmooth optimization problems as well as nonlinear
programming problems with a relatively small number of nonlinear constraints--both
active areas of current research. Section 6 discusses how to efficiently compute the
eigenvalues of the matrix iterates generated by the optimization algorithm when the
dimension of the matrices is large. Section 7 explains how all of the foregoing may
be generalized to apply to eigenvalue problems of the form A(x)q ABq, where B is
a fixed symmetric positive definite matrix. Section 8 discusses the case where several
different matrix families are involved. Section 9 summarizes numerical results that
have been obtained for a fascinating classical problem of Lagrange, finding the shape
of the strongest column. Here the task is to maximize the smallest eigenvalue of a
fourth-order differential equation. Section 10 discusses results obtained for finding
optimal preconditioners for the solution of linear systems of equations. Section 11
discusses the application of our large-scale algorithm to a problem arising in graph
theory, computing the Lovsz number of a graph. Section 12 makes some concluding
remarks.

2. Optimality conditions the generalized gradient, and dual matrices.
We start with some notation. Let n, denote the set of n by m real matrices, and
let Snn denote the set of n by n real symmetric matrices. By A _> 0, where A is
symmetric, we mean that A is positive semidefinite. The notation II. II will always
denote the Euclidean vector norm. Let (,) denote the Frobenius inner product on the
set of rectangular matrices, namely,

(B, C) tr BTC tr CTB Z
where the dimensions of the matrices depend on the context. (For example, B and C
could be vectors.)

We now give a simple but important lemma.
LEMMA 1. The convex hull of the set

is the set

{: D E SNnXn,tr D 1, >_ 0}.
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LARGE-SCALE OPTIMIZATION OF EIGENVALUES 91

Furthermore, the elements in the first set are the extreme points of the second set.
Proof. Any convex combination of the first set is clearly contained in the second.

Furthermore, any matrix in the second set has a spectral decomposition

f iWiwT

where the eigenvalues i are nonnegative by the positive semidefinite condition and
sum to one by the trace condition, and the eigenvectors wi have unit norm, i.e., the
right-hand side is a convex combination of elements in the first set. Clearly, any
element of the first set is an extreme point of the second set. Also, any element of the
second set that is not rank-one can be written as a nontrivial convex sum of elements
in the first set and is therefore not an extreme point.

THEOREM 1. Let A E Snxn, and let AI(A) be the largest eigenvalue of A. The
following characterizations hold:

(1) AI(A) max{(q, Aq) q [[= 1};

(2) A(A) max{(qqT, A) "[I q II 1};

(3) A(A) max{(r, A) (f e Sn’, tr/) 1, >_ 0).

Consequently, is a convex function of A.
Proof. Equation (1) is the well-known Rayleigh quotient characterization. Equa-

tion (2) follows immediately from properties of the inner product. Equation (3) follows
from Lemma 1, since maximizing a linear function over a set gives the same result
as maximizing over its convex hull. The convexity follows from any of the charac-
terizations, since the pointwise maximum of a set of linear functions is always con-
vex.

The characterization of a convex function as a pointwise maximum of a set of
linear functions leads directly to the definition of the subdierential of f. For example,
suppose that z k, and

f(z) max{(ai,

where Z is a discrete index set. Then the subdifferential of f at z may be defined as

Of(z)

where "conv" denotes convex hull. An important property of Of that immediately
follows from this definition is that z minimizes f if and only if 0 Of(z); note also
that f is differentiable at z if and only if the subdifferential contains only one element,
namely, the gradient of f at z. It is a fact [45, Cor. 23.5.3] that the subdifferential
may be defined in this way for general convex functions, giving, as a consequence of
(2),

(4) OA(A) conv({qqT: q is a normalized eigenvector for A(A)}).

This leads to the following theorem.
THEOREM 2. Suppose the maximum eigenvalue AI (A) has multiplicity t, i.e., the

eigenvalues of A are

AI A > A+I >_’" >_
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92 MICHAEL L. OVERTON

Then the subdifferential of )l at A is the set

(5) 0AI(A) conv({QlwwTQT w e t, w I1= 1}),

where the columns of Q1 form an orthonormal set o.f eigenvectors for AI(A). Another
equivalent form is

(6) O)(A) {= QUQT1 V e Stxt, trU=l, V_>0}.

Proof. Equation (5) follows directly from (4), and (6) then follows from Lemma 1.
Alternatively, writing the eigendecomposition of A as

A Q Diag(hi) QT,

we see that (6) follows from directly applying the definition of the subdifferential to (3)
since the matrices on the right-hand side of (6) are those that achieve the maximum
in (3), with

No convex hull operation is necessary, since the set is already convex. [:l

We now change notation, introducing A(x) E Snn, a continuously differentiable
function of x E m, with eigenvalues

>... >

and partial derivatives

OA
Ak(x) -xk(X).

It is convenient to use the symbol for two purposes, with

A(x) A(A(x)),

and the distinction should be clear from the context. The function A(x) is not
generally convex, but it is the composition of the convex function A(A) with the
smooth function A(x). The Clarke generalized gradient of Al(X) may therefore be
defined by means of a chain rule [5, p. 42], [13, p. 366]. We obtain the following
theorem.

THEOREM 3. Suppose the maximum eigenvalue of A(x) has multiplicity t, with
a corresponding orthonormal basis of eigenvectors Q(x) [q(x),...,qt(x)]. The
generalized gradient of A(x) is the set

(7) O(x) {v ’ Vk <U,Q(x)TA(x)Q(x)),
for some U Stxt,U O,tr U l}.

Proof. By the chain rule just cited,

OA(x) {v e ’ vk (G, Ak(x)) for some G e 0A(A)}.
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LARGE-SCALE OPTIMIZATION OF EIGENVALUES 93

The proof is completed by using (6) and noting that

(QUQT ,Aa) (U, QT AaQ).

Equation (4) is well known; see [7], [43], and [5]. The equivalent form (6) is
much less known and much more useful, as we shall see shortly; the earliest reference
we know for this explicit form is Fletcher [12], where a different proof was given.
Equation (7) was given in the case that A(x) is affine in [36], using a proof based on
Fletcher’s work. The proofs given here make more use of the machinery of [5] and [45].
A referee has pointed out that Clarke’s powerful theory is not required for Theorem
3 and subsequent results, which could in fact be obtained from the theory of "locally
convex" functions; see [24] and [49]. We prefer to refer to Clarke’s work so that we
may use the beautifully simple notion of a chain rule developed there.

The matrix U may be viewed as a "dual matrix"; indeed, a "dual problem" is
formulated at the end of this section. The t t matrix U may be called a "reduced
dual matrix," but since it is the one we shall need as a computational tool we shall
also refer to it simply as the dual matrix. (The term "Lagrange matrix" was used
in [36].) The distinction between U and U is analogous to the notational question of
whether inactive constraints in a nonlinear program should be assigned zero Lagrange
multipliers.

Theorem 3 gives a form of the generalized gradient that is particularly useful for
computation, since it does not involve taking a convex hull. Indeed, it characterizes the
generalized gradient using structure functionals, to use a term introduced by Osborne
[35] for some other nonsmooth optimization problems. In our case, the structure
functionals may be taken to be the t(t + 1)/2 quantities

(8) qA(x)qj, 1 <_ <_ j <_ t,

assuming the eigenvectors ql,’", qt are fixed. Theorem 3 then states that the gener-
alized gradient of Al(x) consists of particular linear combinations of the gradients of
the structure functionals, namely, those with coefficients uii and 2uij (j i) making
up a positive semidefinite dual matrix U with trace one. (A better definition of the
structure functionals, which would allow statements about second-order effects, would
presumably use the matrix exponential formulation mentioned in 4.)

Note that the eigenvector basis Q1 for Al(x) is not unique if t > 1 (and even if
t 1 the sign is not unique). However, replacing Q by any other valid choice, which
must have the form QV for some t t orthogonal matrix V, simply transforms the
dual matrix U into VUVT, preserving its eigenvalues.

The directional derivative of A is easily deduced from the generalized gradient
formula. We have the following theorem.

THEOREM 4. Under the assumptions of Theorem 3, the directional derivative

)(x; d)= lim
c--0+

Al (X + ad) Al (X)

is the largest eigenvalue of

(9)
m

B(d) E dkQ(x)TAk(x)Q(x)"D
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94 MICHAEL L. OVERTON

Proof.
function,

Because Al(x) is the composition of a convex function with a smooth

Ai(x;d)= max (v,d)
vEO.Xl(X)

(see [13, p. 369] or [5, Chap. 2]). By (7), we therefore obtain

A] (x; d) mx(U, B(d)),

where the max is taken over positive semidefinite matrices with trace one. The result
therefore follows from Theorem 1.

The formula for the directional derivative may alternatively be obtained from the
classical results in [25], which state that the multiple eigenvalue A1 At of A(x)
splits into t eigenvalues of A(x + ad), for a near 0, with corresponding derivatives
equal to the eigenvalues of B(d). However, the proof of this basic fact is not at all
straightforward, especially in the case that A(x) cannot be extended to an analytic
function of complex variables.

We now consider optimality conditions for a constrained version of the model
problem.

THEOREM 5. Consider the problem:

(10) min Al(X)

subject to

(11) Cx b; <_ x <_ u,

where C [c,..-, Cm] E ncm, b nc, and u m. Then a necessary condition

for x to solve (10)-(11) is, in addition to (11), that there exists a dual matrix U e
S, where t is the multiplicity of) (x), and vectors of Lagrange multipliers # n
and m, satisfying

(12) (U,Q(x)TA(x)Q(x)) (#,ck) + ")’k, k 1,...,m,

(13) tr U 1,

(14) Uk0,

and

(5)
k 0 iflk<xk<uk;

>_ 0 ifx=k;

" <_ 0 ifxk=uk.

Here the columns of Q(x) form an orthonormal basis of t eigenvectors for (x).
The necessary condition (together with the satisfaction of (11)) is also sufficient for
optimality if A(x) is affine.

Proof. The proof follows from the standard Lagrange multiplier rule for non-
smooth optimization [5, pp. 228, 240], which reduces to 0 E OA(x) in the case that
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LARGE-SCALE OPTIMIZATION OF EIGENVALUES 95

there are no constraints. The last statement holds because if A(x) is affine, Al(x) is
a composition of a convex with an affine function, and is therefore convex. [:]

We complete this section with a discussion of a duality result, which clarifies the
terminology "dual matrix." By (3), the "primal problem" (10)-(11) is equivalent to

min max (V,A(x)).
Cx--b; <x(u r: tr --i, _0

(Here, as before, x E m and U sn’.) Now define a "dual problem"

max min (,A(x)).
r: tr r=l, _0 Cx=b; (x<u

The following theorem, motivated originally by [3], is a standard saddle point result
and follows from [45, Thm. 36.3]. For closely related results, see [10] and [48].

THEOREM 6. Suppose that A(x) is an affine function, so that Ak(x) is constant
(independent of x) for all k. If the primal problem has a solution, say, defined by
(x*, U*), then the same pair solves the dual problem.

Note that in the unconstrained affine case the dual problem can have a solution
with corresponding objective greater than -c only if

(,Ak) O, k=l,...,m.

Consequently, the dual version of the unconstrained affine primal problem is

(16) max{(,A(0)) tr 1, /) >_ 0, (,Ak) O, k 1,...,m}.

3. Eigenvalue splitting and sensitivity analysis. The following theorem
shows the importance of the eigenvalues of the t t dual matrix U.

THEOREM 7. Suppose that x, U, #, and / satisfy all the conditions (11)-(15)
except possibly the semide.finite condition (14), and let a be an eigenvalue of U with
corresponding normalized eigeuvector v . If d m, 5 satisfy the following
linear system of equations,

(17) dkQAk(x)Q 51 -vvT,
k--1

(18) Cd O,

(19) dk O if xk lk or xk uk,

then d is a feasible direction with directional derivative

)(x; d) a.

Proof. It is clear that d is a feasible direction. The eigenvalues of the first matrix
term on the left-hand side of (17) are, by construction, all equal to 5 except one that
has the value 5- 1. It follows from Theorem 4 that the desired directional derivative
has the value 5. Taking an inner product of U with both sides of (17) yields, using
(12),

m

((,, +
k--1
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96 MICHAEL L. OVERTON

#TCd + /Td- 5 --,

which gives, using (18)-(19) and (15),

=. O

This theorem was given in the unconstrained affine case by [36]. It was also explained
there that for unconstrained problems, the multiplicity t of the multiple eigenvalue
1 is generically restricted by

(20) t(t + 1) < m + 1,
2

the right-hand side being regarded as the number of degrees of freedom available.
(The "1" reflects the fact that the value of the multiple eigenvalue is free.) This
restriction is known as the von Neumann-Wigner crossing rule and is well known
in quantum mechanics; it is further motivated in [15]. For problems with the linear
constraints and bounds (11), it is clearly necessary to replace (20) by

(21) t(t + l)
<re+l--no--rib,

2

where nb is the number of active bounds, i.e., the number of variables xk which are
equal to either k or uk. Note, then, that with this nondegeneracy assumption on t,
the linear system (17)-(19), which consists of t(t + 1)/2 + nc + nb linear equations in
m + 1 variables, is generically solvable.

Theorem 7 shows how a descent direction may generically be computed in the
event that a point x satisfies all the optimality conditions except the positive semidef-
inite condition on U. This direction splits the multiple eigenvalue into two clusters,
one of unit multiplicity and one of multiplicity t- 1, to first order. (See the dis-
cussion following Theorem 4.) Clearly, other splitting choices are possible; the one
given here may be regarded as a generalization of the standard procedure for moving
off constraints associated with multipliers of the wrong sign in linear or nonlinear
programming, namely, moving off only one constraint at one time. Note that the
coefficient matrix of the linear system (17)-(19) is the transpose of the coefficient
matrix describing the active optimality conditions (12), (13), and (15).

Theorem 7 also shows how the eigenvalues of the dual matrix U describe the
sensitivity of an optimal solution along directions that split the multiple eigenvalue
A1 to first order. In particular, the theorem shows how to quantify first-order changes
in A along these directions. If equality holds in (21), then, generically, all feasible
directions in ’ split the multiple eigenvalue to first order; in this case an optimal so-
lution is characterized by first-order information and is generically "strongly unique."
However, (21) cannot usually be expected to hold with equality, in which case there
exists a nontrivial subspace of feasible directions d along which A does not split to
first order, i.e., feasible directions tangent to the nontrivial manifold along which the
eigenvalue retains multiplicity t. Since the function A1 is smooth along this manifold,
it exhibits only second-order changes away from an optimal point x along these direc-
tions. The magnitude of these second-order changes is determined by the eigenvalues
of the appropriate reduced Lagrangian Hessian, just as in nonlinear programming.
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LARGE-SCALE OPTIMIZATION OF EIGENVALUES 97

4. The successive quadratic programming algorithm. Let x* be a local
minimum of A1 (x); if A(x) is affine, x* is also a global minimum. Suppose that A1 (x*)
has multiplicity t*. We wish to generate a sequence of iterates x" converging to x*,
but even if t* > 1, A(x) usually has distinct eigenvalues for any finite value of . (A
similar remark applies to nonlinear programming problems; nonlinear constraints are
generally both active and satisfied only in the limit.) In order for an algorithm to have
good convergence properties, therefore, it is important for it to exploit the structure
of the generalized gradient estimated to apply at the limit point, not just the gradient
information at the current iterate. This observation is the basis for the so-called
"e-subgradient" methods found in [27], and similarly it is the estimated optimal
active constraint structure that underlies successive quadratic programming (SQP)
methods for nonlinear programming. In the latter case this estimated structure is
usually defined by the active set found at the solution of the approximating quadratic
program.

The algorithm presented in [36] takes full advantage of the structure of the gen-
eralized gradient that is estimated to apply at the optimal point. To do so, it requires
an estimate of t*, say t, which is obtained and revised as the algorithm proceeds.
One way of doing this was suggested in [36], but more recent numerical experience
suggests that a simpler approach is better. Let x be the current iterate, with A(x)
having eigenvalues

(x) >... > (x),

with a corresponding orthonormal set of eigenvectors (qi(x)}, and define t in terms
of a tolerance T by

(22) AI(X)- At(x)_ Tmax(1, lAl(X)l); Al(X)- A+(x) > T max(l, A,(x) I).

Define

(23) Q(x) [q (x), qt(x)].

It will usually be necessary to adjust T during the course of the minimization process.
The basic iteration of the method of [36] is defined by solving the following

quadratic program (QP):

(24) min 5 -+- dTWd
d,5

subject to

(25) 6I- Z dkQl(x)TAk(x)Q(x) Diag(0, A2(x)- A(x),...,At(x)- Al(x)),

(26) 6 dkqi(x)TAk(x)qi(x) >_ )i(x) A(x), t + 1,... ,n

(27) I1 d ]1_< p,

where d and ti are variables in m and , respectively; W is a positive definite matrix;
and p is a trust region radius updated by the algorithm.

The motivation for the constraint (25) is that it results from linearizing a differ-
entiable system of t(t / 1)/2 nonlinear equations characterizing the condition A(x)
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98 MICHAEL L. OVERTON

A(x) w, for some w E . Actually, as was pointed out by [56], the form of
the nonlinear system given by (4.1) of [36] is not correct. The correct system uses a
matrix exponential formulation based on Theorem 3.1 of [15], as is explained in more
detail in [39]. Constraints (26) ensure that linearizations of +1,’" ", An give values no
greater than the linearized value for the approximate multiple eigenvalue A1,’", ),.
Both (26) and (27) prevent d from having too large a norm, particularly during the
early part of the iteration. Ideally, they will not be active near the solution.

The constraint (25) is imposed as t(t + 1)/2 scalar constraints, each of which
has a QP multiplier associated with it. These multipliers make up the QP dual
matrix estimate U, with diagonal elements of U equal to the corresponding multipliers
for the diagonal equations in (25) and off-diagonal elements of U equal to half the
corresponding multipliers for the off-diagonal equations in (25).

Constraints on the variables were not considered in [36] for simplicity, but let us
explicitly include linear constraints and bounds in the present discussion, i.e., address
the problem (10)-(11). Assume that the present iterate x satisfies (11); then the
corresponding restrictions that should be added to the QP are

(28) Cd O,

(29) t. _< x / d <: u.

The following theorems clarify some points that were not made in [36].
THEOREM 8. Suppose the quadratic program (24)-(29) has solution d, 5 with the

property that constraints (26)-(27) are not active. Then the solution has an associated
dual matrix U and vectors of multipliers # and / satisfying

(30) (Wd)k + (U, QT Ak(x)Q) (#, ck) + ")’k, k 1, m,

(31) tr U 1,

and

(32)
")/k 0 if ik < Xk + dk < Uk;

"k >_ 0 if xk + dk ik;

"k <_ 0 if Xk + dk Uk.

Furthermore, U, #, ands/are unique if the t(t+ l)/2+nc linear constraints (25), (28)
on d, 5, together with the active bound restrictions on d, are linearly independent.

Proof. The proof follows immediately from the standard optimality conditions for
quadratic programs (see, e.g., [17]). D

THEOREM 9. Assume T O, SO that Al (x) has exact multiplicity t. The quadratic
program (24)-(29) yields a vector d, which is a descent direction .for 1, unless d O.
Furthermore, if p > O, then (d O, 5 O) solves the QP if and only if (12), (13), and
(15) are satisfied for some U, #, and ", i.e., the optimality conditions (12)-(15) are

satisfied, with the possible exception of the positive semide]inite condition on U.
Proof. By (25) combined with Theorem 4, we have

(33) A(x; d) .D
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LARGE-SCALE OPTIMIZATION OF EIGENVALUES 99

Also, the QP solution (d, 6) satisifies

1 dT5+- Wd <_O

since the value zero is achievable with (d 0, 6 0). Thus

(x; d)_<-dTWd.
Since W is positive definite, the right-hand side is nonpositive, with zero value if and
only if d 0. The last statement follows from Theorem 8. D

If it happens that d 0, so that the optimality conditions are satisfied with the
possible exception of the positive semidefinite condition on U, and if indeed U has
a negative eigenvalue, then it is necessary to split the multiple eigenvalue Al(X) as
explained in Theorem 7 in order to obtain a decrease in the maximum eigenvalue. In
nonlinear programming, an analogous situation occurs when x satisfies all optimality
conditions except the sign constraints on the Lagrange multipliers.

Whether d is zero or not, (30)-(31) define a matrix U which is unique as long
as the active constraint gradients of the QP are linearly independent. (Note that
(21) is a necessary condition for such independence.) If the dual matrix estimate
U generated by the QP is not positive semidefinite, this is a clear indication that
the multiplicity estimate t is too large and that the tolerance T should be reduced if
possible. This strategy is used in the current version of our programs. Consequently,
we do not generally expect to converge to points x where it is necessary to split a
multiple eigenvalue. This is indeed the case in practice, with the notable exception of
the graph problems to be described in 11.

THEOREM 10. Suppose that the QP (24)-(29) yields a solution d, 6 with the
property that the constraints (26) are not active, and suppose that U defined by (30)-
(31) is positive semidefinite. Then d is a descent direction for 1 (unless d 0),
regardless of the value of T.

Proof. The exact multiplicity of l(x) is less than or equal to the multiplicity t
defined by (22). Consequently, (33) holds, just as in Theorem 9. However, (d 0,
0) does not generally satisfy (25). Let

E=e
represent the combined linear system (25) and (28), where d- (dT, 5)T. It follows
that equations (30)-(31) may be written

where v (Ull, 2Ul., , Utt, #1,’", #n). (Actually, this system needs modification
if the trust radius constraint (27) is active, but this is easily done by modifying the
corresponding lower and upper bounds k or uk to impose the trust radius bound.)
Taking an inner product with d we have

dWd + ve + /d.
We have ’d _< 0 by (a2) together with feasibility of x. Since e has nonpositive entries
corresponding to diagonal elements of U in v and ero entries elsewhere, we therefore
haveD
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100 MICHAEL L. OVERTON

from the semidefiniteness of U and W, with 5 0 only if d 0 (since W is positive
definite).

It follows that if the dual matrix estimate U is positive semidefinite and T and p
are both sufficiently small,

(34) A1 (x + d) < A1 (x),

provided d is nonzero. (If T is tOO large relative to p the QP may not be feasible, while
if p is too large, d II may be too large for the negative directional derivative to yield
(34).) The best automatic way to adjust T and p is not clear, but in practice, given
a reasonable estimate for -, obtaining the reduction (34) by decreasing p is usually
straightforward unless A is very near its optimal value. Provided (34) holds, the new
iterate may be set to x / d. (The difficulty of a possibly infeasible subproblem is
eliminated in the large-scale algorithm described in the next section.)

It is explained in [36] that, in order to obtain a quadratically convergent method,
W should be set to the Hessian of the appropriate Lagrangian function. We emphasize
that W is not the Hessian of the max eigenvalue function, which does not exist at x*
if t* > 1. The correct form of the Lagrangian is not (4.9) of [36], but a modification
using the matrix exponential formulation mentioned above. The formula for W given
by (4.12) of [36] is correct. Its derivation was omitted, but it is given in [39]. In
the case t 1, the formula reduces to a fairly well known expression for the second
derivative of a distinct eigenvalue; see [26], [20]. In the case that A(x) is nonlinear,
an additional term

Q OA
OxjOx’Q

must be added to (4.12) of [36], assuming that A(x) is twice continuously differen-
tiable.

We make here an observation not made in [36], namely, in some cases the reduc-
tion condition (34) may not hold for p large enough that (27) is inactive, even when
W is set to the correct Hessian matrix and x is very close to an optimal solution.
Such a situation is known as the Maratos effect and it prevents quadratic convergence
of the algorithm, since the trust radius p must be reduced until it yields (34). This
difficulty has indeed occurred on some of our test problems, but it has been over-
come by implementing Fletcher’s second-order correction technique, making use of
our knowledge of the Hessian matrix W to avoid additional gradient evaluations, as
does Fletcher in [12].

Clearly, it is important to develop a precise version of the algorithm for which
global convergence can be guaranteed. As yet, we have not attempted to do this,
but we do not see any inherent difficulty. Trust region convergence proofs are by now
rather well understood; the essential ingredients in this case are given by the theorems
above.

The SQP algorithm summarized in this section has been used to solve a wide
variety of problems, some of which will be mentioned in later sections of the paper.
Our Fortran implementations use Eispack subroutines [50] to obtain the eigenvalues
and eigenvectors of each matrix A(x) and either the Stanford code LSSOL [16] or the
equivalent NAG routine [32] to solve the quadratic programs. Using current work-
station technology, only a moderate amount of computer time is typically required to
obtain a very accurate solution, including verification of the optimality conditions, for,
say, max(n, m) <_ 40. However, the algorithm is very inefficient for much larger values
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LARGE-SCALE OPTIMIZATION OF EIGENVALUES 101

of n, m. The next two sections discuss how to modify the algorithm for large-scale
problems.

5. The optimization algorithm when m is large. In this section we discuss
our approach to modifying the successive quadratic programming algorithm when m
is large, say, m > 40. The discussion of how to efficiently compute the eigenvalues
when n is also large is deferred to the next section.

The first observation is that the benefits of quadratic convergence are far out-
weighed by the cost of computing and factoring the Lagrangian Hessian W when m
is large. We shall therefore consider a first-order algorithm based on successive linear
programming instead of successive quadratic programming, replacing W by zero in
(24). First-order algorithms, which generally converge at a first-order rate, can be
very satisfactory in some applications; in other cases they can be excruciatingly slow.
If it happens that equality holds in (21), then, generically, the solution is "strongly
unique," which implies that a first-order method is quadratically convergent. How-
ever, this is not generally to be expected.

A successive linear programming method retains the key feature of the SQP algo-
rithm of [36], namely, the algorithm estimates the eigenvalue multiplicity t and uses
the appropriate t(t + 1)/2 linear constraints to approximate the condition ,)i (X -- d)At(x / d) w, generating the corresponding t t dual matrix U. Consequently,
verification of the optimality conditions for the model problem is possible. We have
the following theorem.

THEOREM 11. Assume that T O, so that )l(x) has exact multiplicity t. Then
the linear program (24)-(29), where W O, yields a vector d, which is a direction of
nonascent for (x). Furthermore, if p > O, then (d 0,5 O) is a (not necessarily
unique) solution of the linear program if and only if (12), (13), and (15) are satisfied
for some U, #, and ".

Proof. The proof is a straightforward modification of the proof of Theorem 9.
The solution (d 0, 5 0) cannot be unique when t(t + 1)/2 + nc +nb < m + 1, since
it is not a vertex of the feasible region. D

However, even solving the linear program (24)-(29), where W 0, is not a
justifiable expense when m is large, especially if t(t + 1)/2 + nc +nb << m, which
is usually the case. Usually the LP has only a few active general linear constraints,
i.e., (25) and (28), so that obtaining a vertex solution requires most of the elements
of d to be on their bounds. Often, aside from perhaps a few "genuine" active bounds
arising in (29), most of the active bounds are trust radius bounds in (27). If the
simplex method is used to solve the LP, most of the work involves finding the active
set of bounds. Since there are only a few general linear constraints, the work per
simplex step need only be O(m), but O(m) steps are required. This is not acceptable,
especially since the exact set of active trust radius bounds is of little importance; the
purpose of the trust radius is simply to restrict d so that its norm is not too large.

In view of these remarks we have implemented the following "partial linear pro-
gramming" solver. (For a related idea, see [23].)

PLP Algorithm to partially solve the LP

(35) min gT

subject to

(36) Ed e,
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102 MICHAEL L. OVERTON

(37)

(38)

(39)

(40)

Fd>_f,

kEK,

II d I1< p,

where d (dT, )T }m+l, K is an index set, and g, E, e,F, f,[,
are defined so that (35)-(40) is equivalent to (24)-(29), with W 0,
except that the additional constraints (38) have been introduced (for
reasons to be explained shortly) and that, for convenience, the trust
radius restriction applies to d instead of d. Thus

g [0,...,0, 1]T;

E and e, respectively, contain the t(t + 1)/2 rows

[-q(x)TA1 (x)qj(x), -qi(x)TA.(x)qj(x), 50]; ij(i(X)--l(X)),

1 <_ _< j _< t (where 5j is the (i, j) element of the identity matrix),
together with the additional nc rows

[c0]; 0;

F and f contain the rows

[--q(x)TA(x)q(x), ...,-q(x)TAm(x)q(x), 1]; A(x) A(x),

t + 1,...,n; and

[(t x), -1; [(u x), ].
It is assumed that l <_ x _< u, so that l _< 0, >_ 0. Note also that
f <_ 0, so d 0 satisfies all constraints except (36). It is assumed
that t(t + 1)/2 + nc << m. It is not necessary to store or even
fully compute the derivative matrices Ak(x); rather, a subroutine is
required to perform the matrix vector product Ak(x)q for given index
k and vector q.
Step 0. Set p 0. Set o to the least norm solution of the un-
derdetermined linear system (36), (38). This is obtained by a QR
factorization of G, a matrix defined initially to contain the columns
of ET, with rows corresponding to the indices in K removed. Let the
QR factorization of G be given by

G YR,

where R is upper triangular and Y, which has the same dimensions
as G, satisfies yTy I. Then solve

RTdY e
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LARGE-SCALE OPTIMIZATION OF EIGENVALUES 103

and set

(41)

(42)

(43)

0 Ydy,

the least norm solution of GTd--e. Set d to the vector containing
0 interspersed with zeros corresponding to the entries in K. (We use
the Linpack software for computing the QR factorization; the range
space basis Y is stored only as a product of Householder transfor-
mations. For details, see [8] and, for information on how to update
the factorization and use it in the context of optimization, see [17].)
Then set d ad, where a is defined as follows. If d is a feasible
point for the LP, set a 1. Otherwise, if d0 violates the constraints
(37), the bounds (39) or the trust radius restriction (40), set a to
the maximum value possible so that d satisfies (37)-(40). (This effec-
tively modifies the equality constraints of the LP. The rationale here
is that if the least norm step to the equality constraints of the LP is
infeasible, most likely the approximations underlying the definition
of the LP are not good enough to justify its solution, should it indeed
have a feasible solution.)
Step 1. Let be g with rows corresponding to the indices in K
removed. Set d to the least squares projection of onto the null
space of GT. This is obtained by using the QR factorization of G to
solve the least squares problem

i.e., solving

Rv yT,

and setting d to the residual Gv-O. Note that a null space basis is not
computed. If II d II- e, go to Step 3. Otherwise increment , and set
dV to the vector containing d interspersed with zeros corresponding
to the entries in K.
Step 2. Compute the maximum step aV so that

satisfies the constraints of the LP, consequently making a new general
linear constraint or bound active. In the former case, append the
corresponding row of F as a new column of G. In the latter case, if the
new active bound is one of the bounds in (39), add the corresponding
index to K and remove the corresponding row from G. In either of
these cases, update the QR factorization of G accordingly and go
back to Step 1. Finally, if the new active bound is one of the bounds
in (40), go to Step 3.
Step 3. Set v to the final vector of constraint multipliers, by per-
muting the elements of the last solution of (42) to correspond to the
row order in E and F, interspersing zeros corresponding to inactive
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104 MICHAEL L. OVERTON

constraints in (37). Set ’ to the final vector of bound multipliers, by
setting

k (g- [ET FT]v)e, k e K,

and /k 0 otherwise. (See [17, p. 189].) Exit with 0 (defined by
(423)), v, /, and K.

The basic idea of the PLP algorithm is that once one active trust radius bound
is encountered, there is little to be gained by going through the computationally
expensive process of adding all the other active trust radius bounds making up a
vertex solution to the LP. Of course, since the PLP method neither checks multiplier
signs nor allows a constraint or bound, once active, to become inactive, it will not
generally produce an optimal solution of the LP.

Note that when t 1, d 0 and the vector consisting of the first m components
of ldl, say ldl, is the steepest descent step for the differentiable function Al(X),
projected to satisfy the linear constraints Cd 0 and (38), and with steplength
restricted by (37), (39), or (40) (if the last case applies, the algorithm terminates
immediately with d aid1). When t > 1, the algorithm certainly does not yield
a steepest descent direction; such a direction would violate (25) and hence split the
current approximate multiple eigenvalue. However, the first m components of 1 may
be viewed as a projected steepest descent direction, where by this we mean projected
to satisfy the additional t(t + 1)/2- 1 conditions in (36).

The selection rule for s in Step 0 eliminates one potential difficulty with the
SQP method, namely, the possibility of an infeasible subproblem.

Instead of using the PLP algorithm, which is based on QR factorizations of ma-
trices with a small number of columns, an alternative approach would be to use an
affine scaling interior point method to partially solve the LP.

We now define the successive partial linear programming (SPLP) method whose
purpose is to solve the constrained model problem when m is large by a sequence of
calls to the PLP algorithm. Each of these calls partially solves an LP of the form (35)-
(40). The number of equality constraints in (36) is determined by the multiplicity
estimate t. As with the SQP algorithm, the hope is that, once t is determined correctly,
the inequality constraints (37) will become permanently inactive. However, since
bounds in (11) may be active at a solution x*, it is not adequate to begin the PLP
algorithm with all bounds on the elements of d inactive, since then the same active
set of bounds would have to be repeatedly built up every time the PLP algorithm is
executed. This inefficiency is avoided by the use of the bound active set K. Bounds are
added to K when they are encountered during a PLP execution; they are removed
from K after a PLP execution if the corresponding multiplier signs indicate that
they should not be active. Also, if the dual matrix U defined by the multipliers
characterizing a PLP "solution" is indefinite, the multiplicity tolerance T is reduced.
The updating of the trust radius p is based on recommendations in [13].

SPLP Algorithm to solve (10)-(11).
Step 0. Initialize the trust radius p and the multiplicity tolerance T.

Define a convergence tolerance . Set x to an initial value satisfying
(11). Compute the eigenvalues and eigenvectors of A(x). Initialize
K to the empty set.
Step 1. Define the multiplicity estimate t and associated block of
eigenvectors Q1 by (22)-(23). Set K’ K. Partially solve the LP
(35)-(40), using the PLP Algorithm, producing (dT,5)T, v,,
and (a possibly modified) K.
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LARGE-SCALE OPTIMIZATION OF EIGENVALUES 105

Step 2. Construct U and # from v, by setting diagonal elements
of U to corresponding multipliers for diagonal equations of (25), off-
diagonal elements of U to half the corresponding multipliers for the
off-diagonal equations of (25), and elements of # to corresponding
multipliers for the constraint Cd O. If U is not positive semidefi-
nite, reduce T by a factor of two. If II d I1_< e, go to Step 5.
Step 3. Compute the eigenvalues of A(x + d). If 1 (x / d) _> 1 (x),
then set K K’, divide p by two, and go to Step 1.
Step 4. Define

A1 (x) A (x + d)=
the ratio of the actual to predicted reduction in the minimization ob-
jective. If > 0.75, double p; if < 0.25, divide p by two. Compute
the eigenvectors of A(x + d), if they were not already obtained, and
replace x by x + d. If /does not satisfy (32), remove indices from K
corresponding to violated bounds in (32). Go to Step 1.
Step 5. If U is positive semidefinite and "r satisfies (32), stop. If U is
not positive semidefinite, then obtain a reduction in A by splitting
the multiple eigenvalue 1 (x) At(x), as explained in Theorem
7; then reduce T by a factor of 10 and go to Step 1. Otherwise, if, violates (32), remove indices from K corresponding to violated
bounds in (32), divide p by two, and go to Step 1.

The following theorem provides one justification for the SPLP method; to avoid
unnecessary complication, some simplifying assumptions are made.

THEOREM 12. Suppose that the PLP algorithm called by Step 1 of the SPLP
method generates (dT, )T with the property that

aoo + al,

i.e., no bound in (39) or constraint in (37) becomes active. Suppose also that U defined
by the subsequent Step 2 of the SPLP method is positive semide]inite. Then d is a
direction of nonascent for ).

Proof. By construction, we have E e, E 0, so E ae. Therefore, by
the same argument used in Theorem 10, (33) holds. We therefore wish to show that

dm+ is nonnegative. Let us first look at the second term of d. We have

(1)m+1 ]Td _oT(I yyT)o <_ O,

where , are defined by Step 1 of the PLP algorithm, since yyT is the orthogonal
projector onto the range space of G and I- yyT is the orthogonal projector onto
the null space of GT. Now consider the first term of . We have

Gv YYTI,

so taking an inner product with (41) gives

vTe [tTydy .TO (l))m+l"

The proof is now complete, since vTe
_

0 for the same reason as given in Theorem
10.
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106 MICHAEL L. OVERTON

Theorem 12 is based to some extent on [31, Thm. 4]; as a point of comparison,
note that the dual matrix estimate U generated by the SPLP method is obtained
from least squares approximation.

We expect that the algorithm described above will be modified in the future with
further computational experience and theoretical development. In particular, we have
no theoretical guarantee that the algorithm will converge to an optimal solution; we
have not yet attempted any convergence analysis. However, in its present form, the
algorithm has been used to obtain very satisfactory solutions to the problems to be
described in 9, 10, and 11.

Although it is not practical to compute W when m is large, we note that the SPLP
method can probably be improved by approximating the second-order information in
some way. The expression for W given by (4.12) of [36] is actually a sum of terms, one
corresponding to each eigenvalue smaller than At. Since the denominator of each term
is the separation of the eigenvalue from 1, one idea is to approximate W by a low-
rank approximation, consisting of terms corresponding to eigenvalues immediately
lower than At. It is not clear exactly how the low-rank approximation would be
exploited, but note that an SLP method may be regarded as an SQP method with a
zero-rank approximation to the quadratic term. An alternative idea is to approximate
W using a limited memory quasi-Newton method; see [28]. In either case it seems
probable that a practical SQP method could be devised that would converge faster
than the SPLP method unless it had difficulty identifying the optimal multiplicity t*.

We complete this section by noting that if n is large, the number of inequalities
in (26), and therefore (37), should be substantially reduced. Indeed, as discussed in
the next section, it is not practical to compute all the eigenvalues of A(x) when n is
large.

6. Computation of the eigenvalues when n is large. When n is large, the
QR algorithm used by Eispack is not an efficient way to solve the eigenvalue problem.
Indeed, it is particularly inappropriate for our purposes for two reasons"

1. Since only the largest eigenvalues are of any relevance to the optimization,
it is grossly inefficient to compute all the eigenvalues of each matrix iterate

A(x).
2. Typically, each matrix iterate A(x) generated by the optimization calculation

does not differ much from the previous matrix iterate, whose eigenvalues and
eigenvectors have already been computed.

For both of these reasons, it is clear that the eigenvalues should be computed
by an iterative method. Possibilities are power methods, inverse power methods, and
Lanczos methods. The best choice depends on a number of considerations. In all cases,
however, it is essential to iterate with a block of r vectors, which are approximate
eigenvectors for A1,..., At, where r _> t*, the multiplicity of at the optimal solution.
Otherwise it will not be possible to verify the multiplicity t* or to generate the dual
matrix U. Indeed, unless an a priori upper bound on t* is known, it is necessary
that r > t* to be sure that the correct multiplicity is calculated. The number r can
be adjusted during the iteration according to the value of the current multiplicity
estimate t. It is important to maintain orthogonality of the r vectors during the
iteration. The orthogonalized block versions of the power and inverse power methods
are generally called subspace iteration; see Parlett [42] for details. The block of
eigenvectors computed for the previous matrix iterate is a very valuable starting block
for each subspace iteration after the first few optimization steps.
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LARGE-SCALE OPTIMIZATION OF EIGENVALUES 107

The simplest variation of subspace iteration is that based on the ordinary power
method, which requires repeated multiplication of A(x) onto the block of approximate
eigenvectors. To be applicable, it is necessary that r(x) >1 An(x)I; usually this
method is used only when A(x) is positive definite. The convergence of Ai(x), 1
r, depends on the separation of its magnitude from Ar+l (x). In particular, convergence
of Al(x) is fast if

(44) Al(x)

Whether or not (44) holds, a Lanczos method generally converges faster than the
power method. However, a block Lanczos method is needed, for the reason just
explained. We have not tried using block Lanczos since the necessary software has
not advanced beyond an experimental stage.

Suppose now that (x I<1 An(x)I. This happens, in particular, if A(x)is
negative definite; equivalently, the optimization objective is to maximize the smallest
eigenvalue of the positive definite matrix -A(x), as in the column problem to be
discussed in 9. In this case, an inverse block power method (subspace iteration) is
appropriate. Convergence of A1 (x) is fast if

This is the case for the column problem. The inverse power method, unlike the power
method, requires factorization of A(x) at each step of the optimization iteration, i.e.,
once per subspace iteration, as well as two triangular "solves" at each step of the
subspace iteration.

If the power or inverse power methods converge slowly an attractive alternative
is the shifted inverse power method, commonly known as inverse iteration. As before,
the iteration must be carried out on a block of vectors. Each step requires the block
of vectors to be multiplied by the inverse of sI- A(x); this is implemented by a
factorization of sI- A(x) and several triangular "solves." An excellent shift s is
available, namely, the value of A from the previous matrix iterate. After the first
few optimization steps, the shift is usually so good that only one shifted inverse
multiplication is needed. If sI- A(x) is discovered not to be positive definite during
its factorization, the iterate x may be rejected immediately and the optimization trust
radius p reduced, since )l (x) is necessarily greater than the previous value s. This is
a very valuable observation.

Whatever iterative method is chosen to compute the eigenvalues, caution must
be used. In particular, if the iteration is terminated too soon with an inaccurate
underestimate of A1, which is lower than the previous best value, the optimization
algorithm may be unable to obtain a further reduction in A1 (x + d) for the simple rea-
son that its estimate of 1 (x) is wrong. Thus a good implementation of the algorithm
needs to allow recomputation of A1 (x) when necessary. We have not yet incorporated
this automatically, instead restarting the algorithm when necessary. This is usually
needed only at the beginning of the optimization if shifted inverse iteration is used,
since the excellent choice of shift available makes this method very accurate. Note
one fortunate fact" whatever form of block iteration is used, it is A1 that is the most
accurately computed of A1,..., At; this is the eigenvalue whose accuracy is the most
critical.

If factorizations are not practical, inverse or shifted inverse subspace iteration is
still possible by the incorporation of a third nested iteration for, e.g., the conjugate
gradient method to solve the linear systems required for each step of each subspace
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108 MICHAEL L. OVERTON

iteration. In the case of shifts, this inner iteration may be terminated if indefiniteness
is detected, for the same reason as explained above. We note, however, that the
performance of the conjugate gradient method on the nearly singular systems that
result from a good choice of shift is not very well understood. Most of our numerical
experiments have used factorizations but some (not very extensive) experiments with
a conjugate gradient version suggest that the method may give poor results when
the shift is good, perhaps because of instability resulting from the near singularity of
sI- A(x). An alternative idea, following Szyld [52], is to use the eaige and Saunders
method SYMMLQ [40]. This may give better results than conjugate gradient for
nearly singular positive definite systems. Szyld gives an argument explaining why
the near singularity does not cause difficulty for SYMMLQ; he did not consider the
conjugate gradient method, since he was concerned with interior eigenvalues and
therefore needed to operate with indefinite systems. However, the disadvantage of
using SYMMLQ is that the shifted inverse iteration may converge to a subdominant
eigenvalue, since the iteration is not terminated when sI- A(x) is indefinite. We
have not yet experimented with a preconditioned conjugate gradient method, for
example, using a factorization of an earlier matrix iterate for a number of steps of the
optimization.

7. The generalized eigenvalue problem. All of the preceding sections may
easily be generalized to apply to the eigenvalue problem

(45) A(x)q Bq,

where B is a symmetric positive semidefinite matrix independent of x, not necessarily
the identity matrix, as has been implicitly assumed up to this point. We have the
following modifications to Lemma 1 and Theorem 1 (proofs are omitted).

LEMMA 2. Let Q be a matrix E nxn such that

(46) QTBQ I.

Then the convex hull of the set

{wwT w e n, wTBw 1}

is the set

{=QQT. ,,, =T,, trY=l, >_0}.

Furthermore, the elements in the first set are the extreme points of the second set.
Note that the trace of/) is generally not equal to one.
THEOREM 13. As above, let Q be any matrix nn satisfying QTBQ I.

Now let AI(A,B) denote the largest eigenvalue of the pencil (A, B), i.e., largest root
) of (45) for nontrivial q, ignoring for the moment the dependence of A on x. The
following characterizations of hold:

)(A,B)
A(A,B)

max{(q, Aq) qTBq 1};
max{(qqT, A) qTBq---- 1};

(47) ,I(A, B) max{(, A) /) QQT, e SYn’, tr gr 1, >_ 0}.D
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LARGE-SCALE OPTIMIZATION OF EIGENVALUES 109

Now take Q [ql,"" qn] to be a matrix of eigenvectors of (A, B), normalized so
that (46) holds. Thus, in addition to (46), we have

QTAQ Diag(i).

Assume that the largest eigenvalue A1 has multiplicity t, with corresponding eigenvec-
tors, q,..., qt making up a matrix Q1 E nt. We see then that the set of matrices
achieving the max in (47) is, as before, the right-hand side of (6). Indeed, Theorem
2 and all subsequent theorems, remarks, and algorithm statements then apply ex-
actly as before provided only that the normalization (46) is consistently used for the
eigenvectors.

Note that the details of subspace iteration are well known for the generalized
problem; see [2], [42, Chap. 15]. If a shift s is used, it is of course understood that
A(x) is to be shifted by sB instead of sI.

(48)

8. Several matrix families. Suppose it is desired to minimize

(x)- max A’)(x)
_<<p

subject to (11), where each )t)(x),/-- 1,... ,p, is the largest eigenvalue of a matrix-
valued function A(O(x). The necessary optimality conditions are easily extended to
this case by introducing a dual matrix for each matrix family. Given x, let tt be the
multiplicity of At)(x) if the latter quantity equals (x), and zero otherwise. Let Qt)
be an orthonormal set of t corresponding eigenvectors if tt > 0, and the empty matrix
otherwise.

THEOREM 14. A necessary condition for x to solve (48), (11) is, in addition
to (11), that there exist dual matrices U() Stt, 1,...,p, and vectors of
Lagrange multipliers # nc and "y m, satisfying

P

(49) E(U(0, (Q’))TAk(x)Q)) (#,ck) / /k, k 1,...,m,
1--1

P

(50) Z tr U(0 1,
l--1

(51) U() _> 0, l- 1,...,p,

as well as (15). The necessary condition is also sufficient in the aflfiue case.
The proof is a straightforward generalization of the proof of Theorem 5.
Similarly, the SQP and SPLP algorithms are easily adapted to minimize (x) by

including, in the QP or LP, constraints of the form (25)-(26) for each of the p matrix
families. Multiplicity estimates t, 1,...,p, may be defined as the largest integer
t such that

(x) ,)(x) _< T max(l,
with t 0 if no positive integer satisfies the inequality. Note that it is not recom-
mended to simply define A(x) to be a block diagonal matrix with blocks A()(x),
1,...,p. Such an approach loses some of the structure of the generalized gradient
of (x), since it does not take account of the fact that eigenvalues corresponding to
different diagonal blocks of a block diagonal matrix do not interact with each other.

One application of (48) is minimizing the maximum eigenvalue of A(x) in absolute
value by taking A()(x) A(x),A(2)(x) -A(x); see [36] as well as 10 below.
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110 MICHAEL L. OVERTON

9. The column problem. A classical problem that goes back to Lagrange is
to find the shape of the strongest column with given volume. Mathematically, the
problem is to determine a function a(x), the cross-sectional area of the column, from
an admissible set

(52) a L" 0 <

_
a(x)

_ , a(x)dx 1

to maximize the least eigenvalue of

u e

on the interval [0,1], where p >_ 1 (usually p 1 or p 2). Here p has a different
meaning from the previous section and x refers not to unknown parameters but to
a spatial dimension along the axis of the column. The function u(x) measures the
displacement of the column when deflected from its equilibrium position. The case
p 2 models columns with circular (or equivalently square) cross-sections of uniform
material. The case p 1 models "thin-wall" beams or columns, where a variable
thickness shell of one kind of material surrounds a uniform core of another material.
The significance of the least eigenvalue of the differential equation is that it corre-
sponds to the critical buckling load in the Euler-Bernoulli model of the column. (The
load is applied at the ends of the column, in the direction of its axis.)

The problem is a controversial one that has been addressed by many applied
mathematicians and structural engineers, including [53] and [33]. Our work on this
problem is a joint effort with Steve Cox; the details of our theoretical and compu-
tational contributions may be found in [6]. Here we briefly summarize some of the
computational results. We discretized the problem, approximating a(x) by a piece-
wise constant function ah, where h is the mesh size. Following the standard approach
in [51], we approximated u by Uh, using piecewise cubic Hermite finite elements, and
constructed the corresponding finite-dimensional bending matrix A(ah) and stiffness
matrix B such that the eigenvalues of the generalized problem (45),

(54) A(ah)q ,Bq,

converge to the eigenvalues of the differential equation as h decreases to zero. (Only
the smallest eigenvalues are well approximated by the discretization; these are also
the eigenvalues of physical interest.) The eigenvector q consists of the values of Uh
and its derivative at the mesh points. There is a slight conflict of notation; ah refers
both to a piecewise constant function and to the vector of variables that defines it.
The boundary conditions of (53) are "clamped-clamped"; thus A and B are defined
so that Uh and its derivative are zero at 0 and 1. Note that, as in (45), A depends on
the unknown variables while B does not. The integral constraint in (52) becomes a
linear constraint on ah. Regarding the bounds on a: a solution of the mathematical
problem is known to exist only for c > 0, / < c [6]; however, in practice, these
requirements do not seem to be necessary and for most experiments we used c -0,

We then applied the SPLP algorithm of 4 to find that rh which maximizes the
smallest eigenvalue of (54), or equivalently, negating the signs of the eigenvalues,
minimizes the largest one, subject to the linear integral constraint. The order of the
matrices A and B, n, is 2N- 4, and the number of variables, m, is N- 1, where
N h- + 1. We used the inverse version of subspace iteration without shifts to
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LARGE-SCALE OPTIMIZATION OF EIGENVALUES 111

compute the eigenvalues, which requires the factorization of a band matrix at each
optimization step, as explained in 6. Since it is known that the extremal eigenvalue
cannot have multiplicity greater than 2, we computed only r 2 eigenvalues. Most
of the papers in the literature do not take this direct optimization approach. Of the
few that do, we do not know of any that compute the dual matrix approximation
U, which is the key to verifying optimality. (When p 1, A(o’h) is linear, so the
minimum eigenvalue is concave; when p > 1, concavity is lost, and satisfaction of the
necessary conditions does not guarantee optimality, but comparison of the results for
varying p indicates that our computed solutions are most likely global maxima.)

The results show that when p > 1, the optimal (rh is bounded away from zero as
h 0, but for p 1 apparently the optimal rh converges to zero at two points as
h 0. Presumably, the optimal column has zero thickness at two points if p 1, but
not if p > 1. This has been a subject of great controversy in the literature, especially
when p 2; see [6] for details. Plots of the optimal cross-sectional area ah(X) are
shown in Fig. 1 for N 513 with p 1 and p 2, respectively. The functions plotted
are piecewise constant with 512 pieces, with no interpolation. The strongest column
is about 33 percent stronger than the uniform column with the same volume in the
case p 2 and about 25 percent stronger in the case p 1.

In all cases 1 _< p _< 3, the first eigenvalue is double at optimality. It is this double
eigenvalue that has caused most of the debate in the literature; indeed, some authors
have expressed doubt about the multiplicity even when giving the correct result for
the optimal a. Even more interesting, the 2 2 dual matrix U that demonstrates
optimality has minimum eigenvalue bounded away from zero as h - 0 for all p > 1,
but for p 1 the dual matrix is apparently singular in the limit as h 0. We
conclude that the double multiplicity of the eigenvalue of the differential equation is
"strongly stable" for p > 1, but not for p- 1.

The performance of the SPLP algorithm was very good. The results shown in
Fig. 1 were obtained using a convergence tolerance e 10-3, with the multiplicity
tolerance and trust radius set initially to T 0.1 and p 5 and the variables initialized
to 1, i.e., the uniform column. The number of calls to the subspace iteration routine,
i.e., the number of times the computation of the eigenvalues was required, was 60 for
p 2 and 27 for p 1, with a total computation time of less than 1.5 hours on a
Sparc station in each case. The residual of equations (12)-(13) was reduced to about
10-3 in the case p 2 and about 10-2 in the case p 1. The accuracy of the optimal
1 was approximately four decimal figures, with the gap between the first and second
eigenvalues reduced to about 10-6. Such fast convergence indicates a well-conditioned
optimization problem, since the method is only first-order. We also performed some
experiments with c, the lower bound on rh, set to a positive number, e.g., 0.25. The
active bound strategy used by the SPLP algorithm worked very effectively. Typically,
most of the active bounds were identified in just a few steps, with fine tuning of the
active set taking place subsequently.

10. Design of optimal preconditioners. Greenbaum and Rodrigue [21] have
used our optimization programs to solve the following problem: given a positive def-
inite symmetric matrix B, find the positive definite symmetric matrix M with pre-
scribed sparsity pattern which minimizes the two-norm condition number of
M-1/2BM-/2. They show that M equivalently minimizes the maximum eigenvalue
(in absolute value) of

I- M-/2BM-/2
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FIG. 1. The shape of the strongest column.

or

(55) I-L-1ML-T,
where LLT is a Cholesky factorization of B. The latter formulation is preferable, since
the variables, the nonzero elements of the sparse matrix M, enter linearly. Since a fac-
torization of B is used, finding the optimal preconditioner is clearly much more costly
than solving a system Bx b; the idea is that finding such optimal preconditioners
gives insight that can then be widely applied.

The work reported in [21] was done before the SPLP version of the algorithm was
available, so the SQP method described in 3 was used, the eigenvalues being com-
puted by Eispack. The primary interest was in matrices B arising from elliptic partial
differential equations, but only very coarse meshes could be handled. Nonetheless, it
was found that the experiments gave a substantial amount of insight. For example,
the optimal tridiagonal preconditioner M for B equal to the five-point finite difference
approximation to the Laplacian on the square was computed. The results led to the
conjecture that the optimal condition number is O(h-9), where h is the mesh size in
each direction, and that the optimal tridiagonal preconditioner is only slightly better
than simply setting M to be the tridiagonal part of B. It was also found that the
optimal solution yields (55) with a double eigenvalue at each end of its spectrum,
these two double eigenvalues having the same magnitude. Further experiments in-
volving domain decomposition were also done; this is a promising area for further
investigation.

A better way to formulate the optimization problem is to minimize the maximum
eigenvalue, in absolute value, of the generalized eigenvalue problem

(i- B)q ABq.

Note that, as in 7, the variables, i.e., the elements of M, appear only on the left-hand
side. Using this formulation, we have now performed further experiments with the
SPLP version of our algorithm. Our first idea was to compute the extreme eigenvalues
of the pencil (M- B, B) by direct subspace iteration. This requires only one Cholesky
factorization of B before the optimization iteration begins. However, convergence was
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FIG. 2. Optimal banded preconditioners for B =discrete Laplacian.

much too slow for this approach to be practical. We therefore used shifted inverse
iteration to independently compute the algebraically largest eigenvalues of the pencils

(A(1), B) (M B, B) and (A(2), B) (B M, B).

This required factorizations of (s + 1)B- M and (s- 1)B + M at each optimization
step, for which we used the Linpack band matrix subroutines. At the optimal solution
of all test problems, and indeed usually after a few optimization steps, the largest
and smallest eigenvalues of (M- B, B) were approximately equal in magnitude and
opposite in sign. As explained in 8, two dual matrices U(1) and U(2) are generated by
the SPLP algorithm, with dimensions t and t2, which are the computed multiplicities
of each end of the spectrum of (M- B, B). Note that instead of (13), we have the
condition

tr U() + tr U(2) 1.

We computed the optimal banded preconditioner M for B equal to the finite
difference negative Laplacian on a unit square with mesh size h in each direction.
We assumed Dirichlet boundary conditions, so that B and M are n n matrices,
where n N2, N h-1 1. The matrix M is said to have half-bandwidth k if its
total bandwidth is 2k + 1; thus, for k 0, M is restricted to be diagonal, while if
k N, the optimal solution is M B. The dimension of the optimization problem,
m, is approximately (k + 1)N2. The results support the following conjecture" the
optimal preconditioner M with half-bandwidth k gives a pencil (M- B,B) with
eigenvalues of multiplicity k / 1 at each end of its spectrum for all k < N. However,
computing accurate optimal preconditioners for even moderate mesh sizes was very
difficult for the simple reason that, like the discrete Laplacian itself, the eigenvalue
optimization problem is increasingly ill conditioned as N increases. The negative
end of the spectrum of (M- B, B) has a cluster of eigenvalues which becomes more
dense as N increases. For small mesh sizes (N _< 6) there was not much difficulty
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114 MICHAEL L. OVERTON

identifying the apparently correct optimal multiplicity k + 1, but this became more
difficult for larger N, since the gap between the extremal eigenvalue and the interior
eigenvalues becomes smaller as N increases. Furthermore, it is apparently the case
that tr U(1) 0 and tr U(2) 1 as N , showing that the positive end of the
spectrum of (M- B, B) becomes more and more irrelevant as the discrete Laplacian
B becomes closer to being singular.

The situation is quite different from that reported for the column problem as
we allow the mesh size to go to zero. The column problem is well posed in infinite
dimensions and the finite-dimensional optimization problem is well conditioned as
N c. By contrast, the optimal preconditioning problem for the Laplacian is not
a well-posed problem in infinite dimensions. The reason for this is that the column
problem is concerned only with one end of the spectrum of the differential operator,
namely, the lowest eigenvalue that corresponds (in the case that it is simple) to a
positive eigenfunction, while the optimal preconditioning problem is concerned with
both ends of the spectrum, including eigenvalues corresponding to highly oscillatory
eigenfunctions.

The computed optimal spectral radius of (M-B, B) is plotted in Fig. 2 for various
k and N. The trend is clear. The optimal tridiagonal preconditioner represents a
significant improvement over the optimal diagonal preconditioner (which is a scalar
multiple of the identity matrix). However, increasing k gives successively smaller
improvements until k starts to approach N. This, of course, reflects the fact that the
discrete Laplacian has only five nonzero diagonals, namely, the three main diagonals
and the Nth sub- and super-diagonal.

11. A graph problem. The following problem was communicated to us by
Schramm and Zowe; its origin may be found in [29] and [22]. Given an undirected
graph G, with vertices 1,..., n, let M be an n n symmetric matrix with the restric-
tion that its diagonal elements are zero and its offdiagonal elements (i, j) are zero if
and j are not adjacent in the graph, and let x be the vector whose components are

the nonrestricted lower triangular elements of M. The problem is to choose M, or
equivalently x, to minimize the largest eigenvalue of

(56) A(x) M + eeT,
where e [1,..., 1]T. The minimum value for the max eigenvalue is known to give
an upper bound for the Shannon capacity of the graph [29]. (The upper bound is
sometimes called the Lovasz number of the graph.)

We applied our eigenvalue optimization algorithm to a test problem suggested by
[46]. Given integers a _> 1 and w _> 3, let n aw+ 1 and define G to have the property
that vertices and j are adjacent if j -i < w or + n- j < w. The class of graphs
with this property is denoted C-1. We tried solving the optimization problem for
various values a _< 10 and w _< 6. For these examples the order of the matrix n is
moderate (_< 61), but the number of variables m, which is the number of pairs of
adjacent vertices in the graph, is large (<_ 305). Consequently, it is important to use
the SPLP version of the optimization algorithm, but it is reasonable (though not very
efficient) to compute the eigenvalues using Eispack. (Unshifted subspace iteration
would not work since the smallest eigenvalue, which is of no interest, is negative and
sometimes has a larger magnitude than the largest eigenvalue.)

The test problems are certainly very interesting. In all cases the algorithm im-
mediately generated a point, say &, where the max eigenvalue is multiple to machine
precision, with the two optimality conditions (12)-(13) satisfied to machine precision.
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TABLE 1
Summary of results for graph problem.

a w m 1 t
3 4 39 3.106027 7
4 4 51 4.132934 7
5 4 67 5.151476 7
8 4 99 8.183308 7
10 4 123 10.195149 7
3 6 95 3.055559 11
4 6 125 4.073890 11
5 6 155 5.087257 11
6 6 185 6.097343 11
7 6 215 7.105194 11
8 6 245 8.111465 11
9 6 275 9.116589 11
10 6 305 10.120845 11

min e.v. (U)
.0532
.0545
.0556
.0575
.0584
.0195
.0209
.0219
.0227
.0233
.0237
.0241
.0244

# ,-evals.

1
1

217
130
219
235
238
187
181
227
957*
478
608*

The multiplicity was seven in the cases where w 4 and eleven in the cases where
w 6. (In some cases this required as many as four optimization steps, since suc-
cessive doubling of the trust radius was needed to make a sufficiently large change in
x.) In the case of the first two test problems, the dual matrix U was positive semidef-
inite and the algorithm terminated with the optimal solution &. In all other cases,
however, the dual matrix U was not positive semidefinite and so it was necessary for
the algorithm to split the multiple eigenvalue to obtain a lower point, as described
in Theorem 7. The algorithm then took many more steps to converge to the optimal
solution x*. In all these cases, the max eigenvalue had the same multiplicity at the
final solution x* as at the initially generated point &. This unusual behavior of the
algorithm indicates some underlying linear structure of the eigenvalues that is not
generic and not well understood at the present.

In general, it seems that the optimal multiplicity is 2w- 1. Another interesting
observation is that the minimum eigenvalue of the optimal dual matrix has multiplicity
two for all the problems we have run.

The results are summarized in Table 1. The first two columns specify the problem,
and the third gives the number of variables. The next three columns give the computed
optimal max eigenvalue, its multiplicity, and the smallest eigenvalue of the associated
dual matrix U. The last value given is the number of times the eigenvalues of A(x)
were computed (using Eispack). The convergence tolerance was set to e 10-6. The
multiplicity tolerance and trust region radius were initialized to T .01 and p 10,
respectively. The variables were all initialized to -1. The norm of the residual of
(12)-(13) was reduced in each case to about 10-6 except in the first two cases, where
it was reduced to machine precision (about 10-14 in one step. In the two cases
marked by an asterisk (*) it was necessary to restart the algorithm at one point (with
the original values of T and p) to obtain a satisfactory residual for (12)-(13). It is not
clear why the case a 8, w 6 was so much more difficult than the others, but in
all cases an accurate solution was eventually found. (For the purposes of the graph
application, the iteration could have been terminated much sooner, since the integer
part of the solution is of primary interest, but we wanted to test the accuracy of the
SPLP method.)

It is of some interest to compare our algorithm to that used by Schramm and Zowe,
a "bundle trust region" method, which, as the name suggests, combines ideas of trust
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116 MICHAEL L. OVERTON

region methods with those of the early subgradient bundle methods of Lemarechal
[27]. This algorithm is intended for general nonsmooth optimization problems, not
necessarily involving eigenvalues. The bundle trust region method accumulates a
set ("bundle") of subgradients during the course of the optimization. In the version
described in [47] and [57], one subgradient is added to the bundle per iteration, namely,

(57) [qTA1 (x)q, qTAm(x)q]T,

where, as earlier,

Ak(x) OA(x)
Oxk

(in this case a matrix with one nonzero element), and where q is a normalized eigen-
vector corresponding to Al(x), arbitrarily chosen from the invariant subspace if the
multiplicity of Al(x) is greater than one. Theorem 2 (together with the chain rule)
assures us that this vector is indeed a subgradient of A1 (x), that is, an element of the
generalized gradient O(x).

The initial comparison of our results with those of Schramm and Zowe showed
that, while both algorithms obtained accurate solutions, our algorithm usually re-

quired fewer steps to achieve the same accuracy [46]. However, a revised version of
Schramm and Zowe’s algorithm has now been tested, where at each iteration, if A (x)
has approximate multiplicity t, then t subgradients of the form (57) are added to
the bundle of subgradients, for q equal to the t different columns of the matrix of
eigenvectors Q(x). This strategy substantially improved the algorithm, which now

requires far fewer steps than ours for the same accuracy [46]. The reason for the
dramatic improvement is not completely clear, but it may be related to the surpris-
ing initial behavior of our algorithm. Considering (6) in Theorem 2 again, we see
that the first version of Schramm and Zowe’s algorithm computes the subgradient
defined by U eleT, while the second version computes the t subgradients defined

T k 1,’’’ t (here ek is the kth column of the identity matrix). Clearly,by U ekek,
then, one could add more subgradients to the bundle, using other permissible values

T since the basis Q has beenfor U; there is nothing special about the choice U ekek,
arbitrarily chosen by Eispack. The feature of our algorithm which we believe to be
very attractive is that it efficiently computes t(t/ 1)/2 generically linearly independent
subgradients at each iteration, namely, the gradients of the structure functionals (8),
while the dual matrix estimate U defines the linear combination of these subgradients
that satisfies the optimality condition (12) in the limit. This dual matrix is the key
not only to the verification of optimality but also to any sensitivity analysis of the
solution (see Theorem 7).

It would be premature to draw conclusions as to whether the bundle trust re-

gion algorithm or ours is more efficient, for several reasons: the former requires an
estimate of the optimal solution value, which ours does not; the former solves a QP
(with dimension equal to the number of subgradients in the bundle), which ours does
not; comparisons have been made only on the graph problems just described, which
apparently have a rather special structure that is not completely understood. We
expect that it should be possible to improve the rate of convergence of our algorithm
by approximating second-order information (see 5). We also wonder if the bundle
trust region algorithm would have difficulties when the eigenvalues are computed by
a shifted iterative method, since the basis Q would tend to be little changed at each
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LARGE-SCALE OPTIMIZATION OF EIGENVALUES 117

iteration. By contrast, when Eispack is used, the basis Q1 (x) does not generally con-
verge as x x* (see the examples in [14]), perhaps giving a bundle that is more
"rich" in the various possible values for the subgradients.

Finally, we note that the dual matrix itself appears in the references [29] and [22].
Indeed, the property stated as Theorem 4 in [29] and the third equality in Theorem
9.3.12 of [22] is a special case of Theorem 6 given above, specifically giving the dual
formulation (16). It seems likely that the multiplicity of the minimum eigenvalue
of the optimal dual matrix U (found to be two in our experiments), as well as the
multiplicity of the optimal maximum eigenvalue of A(x) (conjectured to be 2w), should
be significant for the understanding of the original graph capacity problem.

12. Concluding remarks. We have derived optimality conditions for an im-
portant eigenvalue optimization model problem, emphasizing the representation of
the generalized gradient in terms of a dual matrix U. We have given a practical algo-
rithm for solving large-scale problems of this type, based on successive partial linear
programming, which has been applied very successfully in diverse application areas.
The behavior of the algorithm was quite different for the three applications described
in detail. The column problem described in 9 is a well-posed infinite-dimensional op-
timization problem; discretized versions were solved very efficiently by the algorithm.
The preconditioning problem described in 10 gave rise to very ill conditioned prob-
lems, which were nonetheless solved by the algorithm to reasonable accuracy. The
algorithm also gave very accurate answers to the graph problems described in 11,
which have a rather special structure that is not completely understood.

The SQP algorithm of [36], on which the new algorithm is based, has also been
applied to some other applications not discussed in this paper, including the quadratic
assignment problem [44], the stability of Runge-Kutta methods for ordinary differ-
ential equations [30], and optimal diagonal scaling of nonsymmetric matrices [55].
Another application to which we hope to apply our large-scale algorithm is the com-
putation of structured singular values in control [9], [11], [54].

Perhaps the most important feature of our algorithms is that they compute the
optimal dual matrix U, which is the key to the verification of optimality and to
sensitivity analysis of the solution. Given the optimal dual eigenspace basis Q, the
dual matrix U is unique if the active linear constraints of the limiting LP or QP are
independent (see Theorem 9). If the linear independence assumption fails to hold, the
problem is said to be degenerate, since U is then not uniquely defined and verification
of optimality is much more difficult; this happens, for example, in the Runge-Kutta
problems of [30]. Because the basis Q may be replaced by any other orthonormal
basis spanning the same eigenspace, it is the eigenvalues of U that are of significance.
Nonnegativity of the eigenvalues of U is a necessary condition for optimality and,
together with the other conditions of Theorem 5, a sufficient condition if A(x) is affine.
The eigenvalues of U play essentially the same role in sensitivity analysis of optimal
solutions as that well known for dual variables (Lagrange multipliers) in the context
of nonlinear programming; see Theorem 7. In particular, if the smallest eigenvalue
of U is zero, it may be concluded that the optimal multiplicity of the minimization
objective Al(x) is not strongly stable.

Acknowledgments. The work on the column problem is a joint effort with Steve
Cox; much of the development of the large-scale versions of the algorithm described
in 5 and 6 was also joint work with Cox in the course of obtaining solutions to the
column problem. The work on optimal preconditioners is joint with Anne Greenbaum.
The presentation of the optimality conditions in Theorems 1-3 is related to [38],
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which is joint work with Rob Womersley. I would like to thank Helga Schramm and
Jochem Zowe for providing me with details of the graph problems and the related
performance of their bundle trust region method. I have also received much helpful
input from many other people, too numerous to list here, which I nonetheless gratefully
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