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1. Introduction

Many classical problems of robustness and stability in control theory aim to move
the eigenvalues of a parametrized matrix into some prescribed domain of the
complex plane (se€r] and [9], for instance). A particularly important example
(“perhaps the most basic problem in control theoid]) |s stabilization by static
output feedbackgiven matricesA, B, andC, is there a matriXK such that the
matrix A + BKC is stable(i.e., has all its eigenvalues in the left half-plane)? In a
1995 survey 2], experts in control systems theory described the characterization
of those triples(A, B, C) allowing such aK as a “major open problem.” With
interval bounds on the entries Kf, the problem is known to be NP-harg| |

The static output feedback problem is a special case of the general problem
of choosing a linearly parametrized matgi so that its eigenvalues are as far
into the left half-plane as possible. This optimizes the asymptotic decay rate of
the corresponding dynamical systém= Xu (ignoring transient behavior and the
possible effects of forcing terms or nonlinearity). Our aim in this paper is to show
that the optimal choice of parameters in such problems typically corresponds to
patterns of multiple eigenvalues, generalizing an exampld]inThis has cru-
cial consequences for the study of optimality conditions and numerical solution
techniques.

We denote byM" the Euclidean space afby-n complex matrices, with inner
product(X, Y) = RetnX*Y). Thespectral abscissaf a matrix X in M" is the
largest of the real parts of its eigenvalues, denateX). The spectral abscissais a
continuous function, but itis not smooth, convex, or even locally Lipschitz. We call
an eigenvalue of X activeif Re A = «(X), andnonderogatoryf X — i1 has rank
n — 1 (or, in other words) corresponds to a single Jordan block), and weXay
has nonderogatory spectral absciskall its active eigenvalues are nonderogatory.
We call X nonderogatoryf all its eigenvalues are nonderogatory. It is elementary
that the set of nonderogatory matrices is dense and opéfi.ilm a precise sense,
derogatory matrices are “rare”: within the manifold of matrices with any given
set of eigenvalues and multiplicities, the subset of derogatory matrices has strictly
smaller dimensionl].

Informally, we consider thactive manifoldM at a matrixX with nonderoga-
tory spectral abscissa as the set of matrices clos¢ wath active eigenvalues
having the same multiplicities as thoseXf (These eigenvalues are then neces-
sarily nonderogatory.) Later we give a formal definition\df, and we show that
is smooth onM. We denote the tangent and normal spacesttat X by T (X)
and N (X), respectively.

Given a real-valued smooth function defined on some manifold in a Euclidean
space, we say a point in the manifold isteong minimizeif, in the manifold, the
function grows at least quadratically near the point. If the function is smooth on
a neighborhood of the manifold, this is equivalent to the gradient of the function
being normal to the manifold at the point and the Hessian of the function being
positive definite on the tangent space to the manifold at the point.
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Given a Euclidean spa&e(areal inner product space) and a linear nbajfc —
M", we denote the range and nullspacetoby R(®) and N (), respectively.
The adjoint of® we denoted*: M" — E. The map® is transversalo the active
manifold M at X if

N(®*) N N (X) = {OL.

For a fixed matrixAin M" we now consider the problem of minimizing the spectral
abscissa over the affine s&t+ R(®):

inf «. 1.1
A+R(®)

For simplicity, we restrict attention to linearly parametrized spectral abscissa min-
imization problems. It is not hard to extend the approach to smoothly parametrized
problems.

Suppose the matriX is locally optimal for the spectral abscissa minimization
problem (1.1). The nonsmooth nature of this problem suggests an approach to
optimality conditions via modern variational analysis, for which a comprehensive
reference is Rockafellar and Wets’ recent woiKj[ we rely on this reference
throughout. IfX has nonderogatory spectral abscissa and thedriapransversal
to the active manifoldM at X, then we shall see that the following first-order
necessary optimality condition must hold:

0 e d*da(X), 1.2)

whered denotes the subdifferential (the set of subgradients in the sen$@]pf [
FurthermoreX must be a critical point for the smooth functi@fna+r), and
indeed a local minimizer.

These necessary optimality conditions are easily seen not to be sufficient, and,
just as in classical nonlinear programming, to study perturbation theory we need
stronger assumptions. We therefore make the following definition:

Definition 1.3. Suppose the map isinjective. The matrix is anondegenerate
critical point for the spectral abscissa minimization problem

inf «
A+R(®)

if it satisfies the following conditions:

(i) X has nonderogatory spectral abscissa;

(i) @ is transversal to the active manifaldf at X;
(iii) 0 € ri ®*9a(X);
(iv) X is a strong minimizer of| pmn(a+R@)) -

(Here, ri denotes the relative interior of a convex set.) Under these conditions
we show that if we perturb the matri& and the mapb in the spectral abscissa
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minimization problem, then the new problem has a nondegenerate critical point
close toX with active eigenvalues having the same multiplicities as those tf

other words, the “active” Jordan structure at a nondegenerate critical point persists
under small perturbations to the problem.

2. Arnold Form and the Active Manifold

Henceforth we fix a matrix in M" with nonderogatory spectral abscissa. Interms

of the Jordan form oK this means there is an integer- 0 and block size integers

Mg > 0, My, My, ..., My > 0, with sumn, a vectora in CP whose components

(the active eigenvalues) have distinct imaginary parts and real parts all equal to the
spectral abscissa(X), a matrixB in M™o (the “inactive part” ofX) with spectral
abscissa strictly less thar(X), and an invertible matri® in M" that reducesK

to the block-diagonal form

P
PXP!= Diag(l_5>, 0,0,...,0) + Z(le + )_»j Jjo).
=1

Here, the expression Diég-, ..., -) denotes a block-diagonal matrix with block
sizesmg, My, ..., My, and

Jq = Diag0,0, ...,0, 3¢

m; >’

0,...,0),

whereJ7 denotes thgth power of the elementam-by-m Jordan block

010..0
001..0

Jn=]0 0 0
S |
0 00..0

(We make the natural interpretation thaf is the identity matrix.) We do not
assume the inactive paBtis in Jordan form or that it is nonderogatory.

We mostly think oM " as a Euclidean space, but by considering the sesquilinear
form (X, Y)c = tr(X*Y), we can also consider it as a complex inner product
space, which we denodM¢. It is easy to check that the matricgg are mutually
orthogonal in this space:

N _|my—q if j=kandg=r,
U (g ) = {0 otherwise @D
We denote/—1 byi.
Our key tool is the following result froml]: it describes a smooth reduction
of any matrix close tX to a certain normal form.
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Theorem 2.2(Arnold Form). Thereis aneighborhood of X inM", and smooth
maps P @ — M", B: Q — MM, and Ajq: @ — C, such that RX) = P,
B(X) = B,

- |4 ffa=0,
Aa(X) = {0 otherwise

forg=0,1,....m—land j=12..., p,and

P mj—l
P(X)XP(X)~" = Diag(B(X),0,0,...,0) + > | (le +y A,-q(X)Jj’a) :

j=1 q=0

In fact the functionsjq in the Arnold form are uniquely defined neXr(al-
though the map® and B are not unique). To see this we again follol, [con-
sidering theorbit of a matrixZ in M™ (the set of matrices similar tg), which
we denote orlZ. Two nonderogatory matrice& and Z are similar if and only
if they have the same eigenvalues (with the same multiplicities), by considering
their Jordan forms. Equivalently, nonderogatyand Z are similar if and only
if their characteristic polynomials coincide or, in other words,

pr(W):pr(Z) (r:1’29"'5m)7

where p;: M — C is the homogeneous polynomial of degregfor r =
0,1,...,m)defined by

detttl —Z2) =) p (™" (teC). (2.3)
r=0

(For examplepg = 1, pr = —trandp,, = (—1)Mdet.) Hence ifZ ¢ MM is
nonderogatory then we can define the orbiZdbcally by

QnorbZ=WeQ pW)=p2) =12 ...,m}

for some neighborhoof of Z.
In the case&Z = J,, we obtain

QnNnorbJn=WeQ pW)=0(r=212...,m} 2.9

Furthermore, by differentiating (2.3) with respectZaat Z = J,, we obtain, for
sufficiently larget,

m m—1
DOV Et™ = =t = Iy hdett] — ) = — > t™ I
r=0 r=0

SO
Ve dm) =—-J31 r=12,...,m). (2.5
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(For a more general version of this result, seelfemma 7.1].) These gradients
are linearly independent, so (2.4) describesylocally as a manifold of codi-
mensionm, with normal space

Norb 3, (Im) = Spar{(J,gfl)*: r=121,2,...,m}

(cf. [1, Theorem 4.4]).
The following result is an elementary presentation of the basic example of
Arnold’s key idea.

Lemma 2.6. Any matrix Z close toJis similar to a uniqgue matrixdepending
smoothly on Zin Jy + Nob g, (Im)-

Proof. We need to show the system of equations

m
A.k k—1\*
pr Jm+ 7(\] )):pr(z) (I’=1,2,...,m)
( ;m—k+1 m

has a unique small solution(Z) € C™ for Z close toJy,, wherex is smooth and
A(Jm) = 0. But atZ = J,, we have the solution = 0 and the Jacobian of the
system is minus the identity, by our gradient calculation (2.5) and a special case
of the orthogonality relationship (2.1). The result now follows from the inverse
function theorem. O

Theorem 2.7(Arnold Form Is Well Defined). The functions.jq in Theoren?.2
are uniquely defined on a neighborhoodof

Proof. Suppose we have another Amnold form defined, analogously to Theo-
rem 2.2, on a neighborhoad of X by smooth map#®, B, andx;, for eachj and
g. By continuity of the eigenvalues we know the matrices

m;j—1 mj—1
In + D xa(0dL  and i 4+ D Ag(0 3
q=0 q=0

have the same eigenvalues¥oclosetoX andj = 1,2, ..., p. Since they are both
nonderogatory they are similar. Hence, by the preceding lemg@{) = Ajq(X)
for all j andq, as required. O

Now we can give a precise definition of the active manifold we discussed in the
previous section.

Definit_ion 2.8. With the notation of the Arnold form above, thetive manifold
M at X is the set of matriceX in @ c M" satisfying

qu(X)zo (q=1,2,...,mj—l,j=1,2,...,p),
ReAjo(X) = B (J=12...,p,

for some reapB.
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The following result describes the active manifold more intuitively:

Theorem 2.9(Structure of Active Manifold). A matrix X close toX lies in the
active manifoldM if and only if there is a matrix P close #, a matrix B close to
B with spectral abscissa strictly less thaX), and a vectorn close tox whose
components have distinct imaginary parts and real parts all equal(¥), such
that X has the same “active Jordan structure” %s

p
PXP!=Diag(B.0.0.....0)+ Y (J1+ 4 Jjo).
j=1

Proof. The “only if” direction follows immediately from the definition. The

proof of the converse is analogous to that of Theorem 2.7 (the Arnold form is well
defined). O

Crucial to our analysis will be the following observation:

Proposition 2.10. The spectral abscissa is smooth on the active manifold

Proof. This follows immediately from the definition, since
a(X) = Rerjo(X) (i=212....p (211

for all matricesX in the active manifold\1. O

Since we are concerned with optimality conditions involving the spectral ab-
scissarestricted to the active manifold, we need to calculate the tangent and normal
spaces toM at X. In the next result we therefore compute the gradients of the
functionsiq (cf. [8, Theorem 2.4]).

Lemma 2.12. On the complex inner product spalekg, the gradient of the func-
tion Ajq: @ — Cat X is given by

(VAjg(X)* = (mj —q) P14 P.

Furthermore on the Euclidean spac#1", for any complexu, the function
Re(uirjq): € — R has gradient

(V(Re(pajg)(X)* = (M) — q) P 1 Jjq P,

forg=0,1,....m—land j=1,2,...,p.

Proof. Fix an integerk such that 1< k < p and an integer such that 0<
r < mg —1.In[1, §4.1], Arnold observes that, in the spadg, the matrixJ;;
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is orthogonal to the orbit oK at PXP~1. Hence, for matrice¥X close toX, we
know
tr(Je (POX)XP(X)"1 = PXP™Y)
= tr(Je (P(X)(X = X)P(X)"+ P(X)XP(X)™* — PXP™1))
= tr(Je POX)(X = X)P(X)™1) + o(X — X)
=tr(Je P(X = X)P™1) + o(X — X).
But from the Arnold form (Theorem 2.2) we also know

POX)XP(X)™t - PXP?
p m-1

= Diag(B(X) = B,0,0.....0) + > > (Ajq(X) = Ajq(X)) .-
j=1 g=0

Taking the inner product witldy; and using the previous expression and the or-
thogonality relation (2.1) shows

(M — 1) Qier (X) = e (X)) = tr(Je PX = X)P™H) 4 0(X — X),
which proves the required expression 0k;q. The second expression follows

after multiplication byu and taking real parts. O

We deduce the following result:

Theorem 2.13(Tangent Space). The tangent space,f(X) to the active mani-
fold at X is the set of matrices Z M " satisfying

tr(P1JP2)=0 (@=212...m-1j=12..,p),
m‘Ret(PJoP2)=8 (j=12....p),

for some reals.
Proof. By definition, the active manifold is the set of matricésn @ c M"
satisfying

Reljq(X) = Re(i)\jq()()) =0 (q =12....m—1, i=12...,p),
ReXjo(X) — ReAp(X) =0 (j=2,3,...,p).

By Lemma 2.12 the gradients of these constraint functions are linearly independent
at X = X, so the tangent space consists of thdssatisfying

Ret(P1J4PZ) =Ret(PliJuPZ2) = 0
@=12...m-1j=12...,p),
Ret(m ‘P~ *JoPZ) —Rettm*P~*JoPZ) =0 (j=23.....p).

as claimed. O
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To simplify our expressions for the corresponding normal space and related sets
of subgradients, we introduce three polyhedral sets in the space

@:{9:(9jq)1 QjoeR, qu eC(q:l,Z,...,m,- -1, j =12..., p)}
Specifically, we define
P

By = {96@: mj9j0=0},

=
p
0, = 160 € O: mjfjo=1¢,

j=1
O = {0€01:60>0,Redj1>0(j=12...,p}

Notice that the se®; is the affine span of the sélf, and is a translate of the
subspac®g. We also define the injective linear map

A ©® > M"

by

mj—1

p
A= 0ig

=1 g=0

Corollary 2.14 (Normal Space). In the Euclidean spac®", the normal space
to the active manifold\ at the matrixX is given by

Nao(X) = P*(ABGg)P~*.

Proof. The proof of the previous result shows thatNH', the tangent space
Ta(X) is the orthogonal complement of the set of matrices

ﬁ*{Jj’a,—iJj’a: q=12....m -1 j=12..., p}P*

U PHm 5 —mitdy 2<j < piP .

Using the elementary relationship, for arbitrary vecersa, .. ., ap:

P P
sparfay —a: 2<j < p} = {Zuja,-: > =o},
j=1 j

we see that the span of the second set is just

P p
p* iZQJOJjO: Zm,—@,—o = O} P,
=1 =1

and the result now follows. O
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It is highly instructive to compare this expression for the normal space to the
active manifold at the matriX to the subdifferential (the set of subgradients)
of the spectral abscissa at the same matrix5]rBurke and Overton obtain the
following result:

Theorem 2.15(Spectral Abscissa Subgradients)lhe spectral abscissais reg-
ular at X, in the sense dfL(], and its subdifferential is

da(X) = P*(A®)P*.

Since the set\ ®7 is a translated polyhedral cone with affine span a translate
of A®g, we deduce the following consequence:

Corollary 2.16. The subdifferentiada (X) is a translated polyhedral cone with
affine span a translate of the normal spacgX).

Notice the following particular elements of the subdifferential:

Corollary 2.17. Foreveryindexl < j < p we have

V(Rerjo)(X) € da(X).

Proof. This follows from Lemma 2.12 and Theorem 2.15 (spectral abscissa sub-
gradients). O

3. Linearly Parametrized Problems

We are interested in optimality conditions for local minimizers of the spectral
abscissa over a given affine set of matrices. We can write this affine set as a
translate of the range of a linear mép E — M", whereE is a Euclidean space,

so our problem becomes

_inf_
A+R(d)

whereA is a fixed matrix inM". Equivalently, if we define a functioh: E — R
by
f(2) = a(A+ ®(2)),

then we are interested in local minimizers fof Suppose therefore that the point
zin E satisfies

A+ d(2) = X.

We henceforth make the following regularity assumption:
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Assumption 3.1. The matrix X has nonderogatory spectral abscissa and the
map® is injective and transversal to the active manifdld at X.

Under this assumption we can compute the normal space tpdatameter-
active manifoldd—1(M — A) (the set of those parameterfor which A + ®(z)
lies in the active manifold), and we can apply a nonsmooth chain rule to compute
the subdifferential off .

Proposition 3.2(Necessary Optimality Condition).
No-2 -4 (@) = P*Na(X),
and
af(2) = *da(X).

Furthermore if X is a local minimizer ofr on A + R(®), then the first-order
optimality condition

0 e ®*9a(X)

must hold

Proof. The first equation is a classical consequence of transversality (or see,
e.g., [L0, Theorem 6.14]). Now, note that is regular atX, by Theorem 2.15
(spectral abscissa subgradients). Hence the horizon subdifferéffialX) is

just the recession cone of the subdifferendial X), and is therefore a subset of
the normal spacél(X), by Corollary 2.14 (normal space). Thus transversality
implies the condition

N(®*) N d%a(X) = {0},

so we can apply the chain rulgéQ, Theorem 10.6] to deduce the second equation.
If X is a local minimizer, thez is a local minimizer off , so satisfies & o f (2),
whence the optimality condition. O

We know, by Proposition 2.10, that the restriction of the spectral abscissa to the
set of feasible matrices in the active manifold is a smooth function. Cleadky, if
is a local minimizer for our problem, then in particular it must be a critical point
of this smooth function. The next result states that, conversely, such critical points
must satisfy a weak form of the necessary optimality condition.

Theorem 3.3(Restricted Optimality Condition). The matrixX is a critical point
of the smooth functioa| ;4 r(@)) if and only if it satisfies the condition

0 € aff ®*da (X).
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Proof. First note X is a critical point if and only ifz is a critical point of
flg-1m—a)- Pickany index 1< j < p, and define a smooth function coinciding
with f on the parameter-active manifold:

g(2) = Rerjo(A+ d(2)) for zclose toz.
By the chain rule we knowg(z) = ®*(Y), where
Y = V(Rexrjo)(X) € da(X),

by Corollary 2.17. Clearly is a critical point if and only if this gradient lies in the
normal space to the parameter-active manifold:

V(2 € Ng-1(p-4)(D-
By Proposition 3.2 (necessary optimality condition), this is equivalent to
D*(Y) € D*(Na(X)),
or, in other words,
0 e d*(Y + Na(X)).
But, sinceY e da(X), by Corollary 2.16 we know
aff da(X) = Y 4+ Np(X),

so the result follows. O

We call critical points ofy| \ a1 r), active-critical

The matrixY appearing in the above proof is a “dual matrix,” analogous to
the construction in4, §10]. It is illuminating to consider an alternative proof,
from a slightly different perspective, whe¥eappears as a Lagrange multiplier.
By Theorem 2.15 (spectral abscissa subgradients), the condiicaff3>*da (X)
holds if and only if there existg € © satisfying

p
Z m; éjO =1, (34)
=1

and a matrixY in M" satisfying

o*(Y)=0 (3.5)

and

Y = P*A(Q)P~*. (3.6)
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On the other hand, by the definition of the active manifold (Definition 2.8), the
matrix X is a critical point of the functiow| 4, r(s), if and only if the smooth
equality-constrained minimization problem

inf B
subjectto m;(Reijo(X) — B) = 0,
o (Mj — QAjq(X) = 0,
SAMA, ®) (

o)

=12....,m—1,
1,2,...,p

) &

—

X—®@2) = A,
BeR, XeM" zeE,

has a critical point a¢8, X, z) = («(X), X, Z). Consider the Lagrangian

L(8, X,z26,Y)
= B+ Ret(Y*(X — ®(2))

p mj—1
+ Z (Gjom,- (Re)»jo(X) - B)+ Z Re(ejﬂ;] (m; —Q)qu(X))>.
j=1 g=1
We can write an arbitrary linear combination of the constraints as

LB, X,2,6,Y) —B.

Differentiating this linear combination at the critical point with respeg te, and
X (using Lemma 2.12) shows

m;6jo = 0, o*(Y) =0, and Y =P*A@O)P, (3.7

M-

j=1

respectively. This implie¥ = 0 and henc® = 0, by transversality and Corol-
lary 2.14 (normal space), so the constraints have linearly independent gradients at
this point.

Thus the point of interest s critical if and only if there exist Lagrange multipliers
6 andY (necessarily unique) such that the Lagrandia@g, X, z, 6, Y) is critical.
Differentiating L with respect tg3, z, and X again gives conditions (3.4), (3.5),
and (3.6), respectively, so the result follows.

The Lagrange multiplier§ andY also allow us to check the second-order
conditions for the above optimization probleBAM(A, ®). Summarizing this
discussion, we have the following result:

Theorem 3.8(Active-Critical Points). The following conditions are all equiva-
lent

(i) X is critical for the functiony| \i 4, r(@))-
(i) (@(X), X, 2) is critical for the problem SANA, ®).
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(iii) Equations(3.4), (3.5),and(3.6) have a solution(d, Y).
(iv) 0 € aff ®*da(X).

Suppose these conditions hdlthen the Lagrange multipligp, Y) is unique and
we have

0e€ ®*3a(X) & 0 € OF
and
0 e ri ®*da(X) « 0 er1iOF.
Furthermore X is a strong minimizer af | vn(a+r@) If @and only if the Hessian
of the Lagrangiannamely

p m-1
V2Y D Rebiy(m — d)rjg(X)),

i=1 9=0

is positive definite on the spacg{[X) N R(P).

Proof. The first four equivalences and the uniqueness of the Lagrange multiplier
follow from the previous discussion. The next two equivalences are a consequence
of Theorem 2.15 (spectral abscissa subgradients) and the uniqueness of the La-
grange multiplier.

Only the second-order condition remains to be proved. Cledriy a strong
minimizer ofa| (a1 r) If @and only if (a(X), X, 2) is a strong minimizer of
restricted to the feasible region of the probl&AM(A, ®). By standard second-
order optimality theory this is equivalent to the Lagrangian having positive-definite
Hessian on the tangent space to the feasible region which, by transversality, is just
T (X) N R(D). O

Recall that the tangent space to the active manifolg( X) is given by The-
orem 2.13. Thus, in principle, the second-order optimality condition above is
checkable, since the second derivativeXatf the functionsijq in the Arnold
form (Theorem 2.2) are computable (s€f for example): we do not pursue this
here.

4. Perturbation

We are now ready to prove our main result. It uses the notion of a nondegenerate
critical point (Definition 1.3).

Theorem 4.1(Persistence of Active Jordan Form)Suppose the matriX is a
nondegenerate critical point for the spectral abscissa minimization problem

_inf_ a,
A+R(P)
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where the linear ma is injective Then for matrices A close té\ and mapsp
close to®, there is a unique critical point of the smooth functi®vina+r))
close toX. This point is a nondegenerate critical point for the perturbed problem

inf «,
A+R(®)

depending smoothly on the data A aéd in particular, it has the same active
Jordan structure ax.

Proof. The matrix X satisfies the first- and second-order conditions of Theo-
rem 3.8 (active-critical points), so using the notation of that result, we can apply
standard nonlinear programming sensitivity theory (see, &,g82[4]) to deduce

the existence of a smooth function

(A, )~ (B, X,2,0,Y)(A, D),
defined for(A, ®) close to(A, @), such that
(B. X,2,0,Y)(A @) = (a(X), X,2,6,Y),

(8, X, 2)(A, ®) is the unique critical point neaiw (X), X, Z) of the perturbed
problemS AM(A, ®), and its corresponding Lagrange multipliefds Y) (A, ®).
Furthermore, by smoothness, the second-order conditions will also hold at this
point.

We now claim the poinX (A, ®) is our required nondegenerate critical point.
Certainly all mapspb close to® are injective. Furthermore, at any matixclose
to X in the active manifold\, it is easy to checkb is transversal to\l at X: in
particular, this holds aX (A, ®).

Note thatX (A, ®) is a strong minimizer ok | ana+ree)), DY the second-order
conditions. In particular, it lies in the active manifald and is close toX, so it
has the same active Jordan structur&Xaand hence has nonderogatory spectral
abscissa. It remains to showelri ®*9a (X (A, ®)).

Now, by analogy with (3.7), stationarity of the Lagrangian implies

O*(P*A)P ™) = 0, where P = P(X(A, ®)) and 6 =6(A, ®):

we simply reduce the matriX (A, ®) to Arnold form (2.2) and apply Lemma 2.12
atX (A, ®)inplace ofX. By Theorem 2.15 (spectral abscissa subgradients) applied
at X (A, ®) we just need to show

O(A, ) € r1i OF,
for (A, ®) close to(A, ). But this follows since

0(A, ®)) € ©, = aff 07,
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and ag A, @) approachesA, ®) we know
6(A, @) — 0 €r1iOF,

using our assumption that®ri ®*da (X) and Theorem 3.8 (active-critical points).
This completes the proof. O

Our argument has interesting computational consequences. Under the assump-
tions of Theorem 4.1, the critical point of the perturbed problers;igfe) « is the
unigue matrixX close toX satisfying the system of equations

X A+ (2,

p
PXP™' = Diag(B.0.0,...,0) + > (Jj1 + A Jjo).
j=1

Reij =B (j=12....p),

p
Z mjgl‘o =1,
j=1

d*(Y) = 0,
Y = P*A(O)P,

for somez, P, B, 1, 8, 0, andY close toz, P, B, &, a(X), , andY, respectively:
the solution must be unique, with the exception of the variaBlesnd B, by
Theorem 3.8 (active critical points).

Theorem 4.1 (persistence of Jordan form) shows that the active Jordan form
of a nondegenerate critical poiKt for a spectral abscissa minimization problem
is robustunder small perturbations to the problem. If we know this active Jordan
form, and we can find an approximation ¥ then we can apply an iterative
solution technigue to the system of equations in the preceding paragraph to refine
our estimate ok.

The definition of a nondegenerate critical point is, in part, motivated by the
second-order sufficient conditions for alocal minimizer in nonlinear programming:
we require the objective function to have positive-definite Hessian on a certain
active manifold, and certain Lagrange multipliers have their correct signs. This
suggests the following question:

Question 4.2. Must nondegenerate critical points of spectral abscissa minimiza-
tion problems be local minimizers?
5. Examples

Our main result, Theorem 4.1 (persistence of active Jordan form), assumes the
critical matrix X satisfies the four conditions of Definition 1.3 (nondegenerate
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critical points). Simple examples show three of these conditions are all, in general,
necessary for the result to hold.

Example 5.1(Necessity of Transversality). Consider the problem

inf{a[é _ﬂ: ze R},

which clearly has global minimizer= 0, sincef = |- |. The mapd: R — M?,
defined by®(z) = [é 72] , is not transversal to the active manifolit at the

nonderogatory matriX = J, = A, since by Corollary 2.14 (normal space) we
know

Nu(X) = [g 8} (52)

so, for example,

[2 8} e N(®*) N Ny (X).

NonethelessX is a strong minimizer af on MN(A+R(®)) = {X}. Furthermore,
we have

o 1 0][3 O0]. _
P 9 (X) = {Retr[o —1} [9 %] Ref > 0} = {0},
s0 0€ ri ®*da(X). (Inthis case, the chain rutef (z) = ®*da(X) fails due to the
lack of transversality, so it is worth noting that we also hawer®d f (2).) Despite
this, perturbing the problem may change the Jordan form of the corresponding
critical point: for example, for all read > 0 the function

O{[z 1]2\/H_—22

e —Z

has unique critical point = 0, and the corresponding matrﬁg é] has distinct
eigenvalues.

Example 5.3(Necessity of Strong Minimality). Consider the problem
infla(l+2z-0): ze R}.

The identically zero ma@: R — C is transversal to the active manifoltt
(which is justC, locally) at the nonderogatory one-by-one maiix= 1 = A,
which corresponds to the critical point= 0. Furthermore, & ri ®*da(X) = {0}.
However, nearby problems like in{1+ z- ¢) (for real nonzera) have no critical
points. In this case it is the strong minimizer condition that fails.
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Example 5.4(Necessity of Strict First-Order Condition). Consider the problem

ot 3 zec).

The mapd: R — M2, defined by®(z) = [(Z’ g] is transversal to the active

manifold at the nonderogatory mati& = J, = A corresponding t@ = 0, using
(5.2). We have

g o 1][% o
* — 2 . —
*da(X) = {Retr[o 0} [9 %} . Ref > 0} =R,

so X is a critical point, and is a strong minimizer@bn M N (A+ R(®)) = {X}.
However, for reak > 0, perturbingd to ®(z) = [izsg] results in a unigue point
in M N (A+ R(®)), namelyX, and now

1
O da(X) = {Retr[g i] [g 2} . Red > O} = [, +00),
2

soXisno longer a critical point. In this case it is the failure of the strict first-order
condition Oe ri ®*da(X) which causes our result to break down.

None of the examples above address the case where the critical dates
derogatory spectral abscissa. The lack of obvious examples suggests the following
problem:

Question 5.5(Derogatory Minimizers). Find a matriX with derogatory spec-
tral abscissa such that is a strict local minimizer of the spectral abscissa on the
affine setA + R(®) and the linear ma is transversal to the active manifold
at X.

Consider, for example, the case of tiMdy-n zero matrixX = 0, withn > 1.
Clearly the active manifold\ is the set of all small complex multiples of the
identity matrix. Hence if the mag is transversal toV at 0O, then its range has
real codimension at most 2. Thi®) certainly contains a subspace of the form
S={Z: tr KZ = 0} for some nonzero matriK . If K is a multiple of the identity,
then for all reak the diagonal matrix Dia@i, —¢i, 0,0, ..., 0) lies in Sand has
spectral abscissa 0, so 0 is not a strict local minimizer. On the other hald, if
is not a multiple of the identity, then an elementary argument st®emntains a
matrix Z with «(Z) < 0, so by consideringZ forreale > 0 we see againthatQis
not a local minimizer. In summary, the zero matrix can never solve Question 5.5.

We end with a simple example illustrating the main result.
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Example 5.6. Consider the spectral abscissa minimization problem
-1 0
inf{a| 0 2z 1|:zeC?},
z7 - O

and we consider the feasible solution

[-10 0]
X=| 00 1|=A
000

corresponding t@ = 0. Clearly X has nonderogatory spectral abscissa 0. In our
notation we havet = 3, p=1,my=1m =2,A=0,P =1, andB = —-1.
The spacé is C? and the mapb: C? — M3 is defined by

0 0
d2=|0 2z 0].
zz7 -2 0
It is clearly injective, with adjointb*: M3 — C? defined by
O*(Y) = (Y13 + Yip» Y22 — Y32)-
The spac® is R x C and we have
®o = {(010, 11): 610 = 0},

and
OF = {(610, 611): 610 = 3, Redyy > O},

] 0 0 0
Ny (X) = 0 0 0]:6,1€Cy.
0 6in O

Thus® is transversal toV at X. Furthermore,

SO

. 0 0 O
da(X)=1/0 % 0|:Ref>0¢,
0 6 3

so the Lagrange multipliers are given by

(f10,.011) = (3. 3) €1 OF and

=i

Il
[eNeNe)
NIFNIE O
NI O O
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Hence, by Theorem 3.8 (active critical points)e0ri ®*da(X). (Alternatively,
direct calculation show&*da(X) = {(0, 3 — 611): Refy; > 0}.)

It remains to check thaX is a strong minimizer Ot | \in(A+Rr(®))- Checking
this directly by Theorem 3.8 involves computing the second derivatives of the
functions in the Arnold form: we avoid this by a direct calculation.

By transversality, the tangent space to the feasible region is

B _ ~ 0 O Z1
Trnasr@) (X) = Tm(X) N R(®) = 0 0 O|l:zzecC
zz 0 O

Hence if the matrixX is close toX in M N (A + R(®)), then

-1 0 =z
X = 0 z 1 with 7z, = 0o(zp).
zz7 -2 O

This matrix has characteristic polynomial
22+ (1= 2222 = [z1h + 221+ |21 ).
The derivative of this polynomial,
32 +2(1 - z)h — |z,

has roots
@z - D+ (-2 +3H".

The root with largest real part is

1-2z 3zl \"*? 222
1+ —— -1) ~ —
3 (1 - 2p)? 2
for smallz. By Gauss’s theorem, the derivative has roots in the convex hull of the
roots of the characteristic polynomial, so

12 |z
Xy> — ~ ——
a(X) > 3 3

for small z. Thus X is a strong minimizer on the tangent space to the feasible
region, as required.

In conclusion, X is a nondegenerate critical point for the original spectral ab-
scissa minimization problem. Hence, by Theorem 4.1 (persistence of active Jordan
form), for any small perturbation to the problem there is a nondegenerate critical
point close toX with the same active Jordan structure.
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