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1. Introduction

Many classical problems of robustness and stability in control theory aim to move
the eigenvalues of a parametrized matrix into some prescribed domain of the
complex plane (see [7] and [9], for instance). A particularly important example
(“perhaps the most basic problem in control theory” [3]) is stabilization by static
output feedback: given matricesA, B, andC, is there a matrixK such that the
matrix A+ BKC is stable(i.e., has all its eigenvalues in the left half-plane)? In a
1995 survey [2], experts in control systems theory described the characterization
of those triples(A, B,C) allowing such aK as a “major open problem.” With
interval bounds on the entries ofK , the problem is known to be NP-hard [3].

The static output feedback problem is a special case of the general problem
of choosing a linearly parametrized matrixX so that its eigenvalues are as far
into the left half-plane as possible. This optimizes the asymptotic decay rate of
the corresponding dynamical systemu̇ = Xu (ignoring transient behavior and the
possible effects of forcing terms or nonlinearity). Our aim in this paper is to show
that the optimal choice of parameters in such problems typically corresponds to
patterns of multiple eigenvalues, generalizing an example in [4]. This has cru-
cial consequences for the study of optimality conditions and numerical solution
techniques.

We denote byMn the Euclidean space ofn-by-n complex matrices, with inner
product〈X,Y〉 = Re tr(X∗Y). Thespectral abscissaof a matrix X in Mn is the
largest of the real parts of its eigenvalues, denotedα(X). The spectral abscissa is a
continuous function, but it is not smooth, convex, or even locally Lipschitz. We call
an eigenvalueλ of X activeif Reλ = α(X), andnonderogatoryif X−λI has rank
n− 1 (or, in other words,λ corresponds to a single Jordan block), and we sayX
has nonderogatory spectral abscissaif all its active eigenvalues are nonderogatory.
We call X nonderogatoryif all its eigenvalues are nonderogatory. It is elementary
that the set of nonderogatory matrices is dense and open inMn. In a precise sense,
derogatory matrices are “rare”: within the manifold of matrices with any given
set of eigenvalues and multiplicities, the subset of derogatory matrices has strictly
smaller dimension [1].

Informally, we consider theactive manifoldM at a matrixX with nonderoga-
tory spectral abscissa as the set of matrices close toX with active eigenvalues
having the same multiplicities as those ofX. (These eigenvalues are then neces-
sarily nonderogatory.) Later we give a formal definition ofM, and we show thatα
is smooth onM. We denote the tangent and normal spaces toM at X by TM(X)
andNM(X), respectively.

Given a real-valued smooth function defined on some manifold in a Euclidean
space, we say a point in the manifold is astrong minimizerif, in the manifold, the
function grows at least quadratically near the point. If the function is smooth on
a neighborhood of the manifold, this is equivalent to the gradient of the function
being normal to the manifold at the point and the Hessian of the function being
positive definite on the tangent space to the manifold at the point.
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Given a Euclidean spaceE (a real inner product space) and a linear map8: E→
Mn, we denote the range and nullspace of8 by R(8) and N(8), respectively.
The adjoint of8 we denote8∗: Mn → E. The map8 is transversalto the active
manifoldM at X if

N(8∗) ∩ NM(X) = {0}.
For a fixed matrixA in Mn we now consider the problem of minimizing the spectral
abscissa over the affine setA+ R(8):

inf
A+R(8)

α. (1.1)

For simplicity, we restrict attention to linearly parametrized spectral abscissa min-
imization problems. It is not hard to extend the approach to smoothly parametrized
problems.

Suppose the matrixX is locally optimal for the spectral abscissa minimization
problem (1.1). The nonsmooth nature of this problem suggests an approach to
optimality conditions via modern variational analysis, for which a comprehensive
reference is Rockafellar and Wets’ recent work [10]: we rely on this reference
throughout. IfX has nonderogatory spectral abscissa and the map8 is transversal
to the active manifoldM at X, then we shall see that the following first-order
necessary optimality condition must hold:

0 ∈ 8∗∂α(X), (1.2)

where∂ denotes the subdifferential (the set of subgradients in the sense of [10]).
Furthermore,X must be a critical point for the smooth functionα|M∩(A+R(8)), and
indeed a local minimizer.

These necessary optimality conditions are easily seen not to be sufficient, and,
just as in classical nonlinear programming, to study perturbation theory we need
stronger assumptions. We therefore make the following definition:

Definition 1.3. Suppose the map8 is injective. The matrixX is anondegenerate
critical point for the spectral abscissa minimization problem

inf
A+R(8)

α

if it satisfies the following conditions:

(i) X has nonderogatory spectral abscissa;
(ii) 8 is transversal to the active manifoldM at X;

(iii) 0 ∈ ri8∗∂α(X);
(iv) X is a strong minimizer ofα|M∩(A+R(8)).

(Here, ri denotes the relative interior of a convex set.) Under these conditions
we show that if we perturb the matrixA and the map8 in the spectral abscissa
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minimization problem, then the new problem has a nondegenerate critical point
close toX with active eigenvalues having the same multiplicities as those ofX. In
other words, the “active” Jordan structure at a nondegenerate critical point persists
under small perturbations to the problem.

2. Arnold Form and the Active Manifold

Henceforth we fix a matrix̄X in Mn with nonderogatory spectral abscissa. In terms
of the Jordan form of̄X this means there is an integerp > 0 and block size integers
m0 ≥ 0, m1,m2, . . . ,mp > 0, with sumn, a vectorλ̄ in Cp whose components
(the active eigenvalues) have distinct imaginary parts and real parts all equal to the
spectral abscissaα(X̄), a matrixB̄ in Mm0 (the “inactive part” ofX̄) with spectral
abscissa strictly less thanα(X̄), and an invertible matrix̄P in Mn that reduces̄X
to the block-diagonal form

P̄ X̄ P̄−1 = Diag(B̄,0,0, . . . ,0)+
p∑

j=1

(Jj 1+ λ̄j Jj 0).

Here, the expression Diag(·, ·, . . . , ·) denotes a block-diagonal matrix with block
sizesm0,m1, . . . ,mp, and

Jjq = Diag(0,0, . . . ,0, Jq
mj
,0, . . . ,0),

whereJq
m denotes theqth power of the elementarym-by-m Jordan block

Jm =



0 1 0 . . . 0
0 0 1 . . . 0

0 0 0
. . .

...
...

...
...

. . . 1
0 0 0 . . . 0

 .

(We make the natural interpretation thatJ0
m is the identity matrix.) We do not

assume the inactive partB̄ is in Jordan form or that it is nonderogatory.
We mostly think ofMn as a Euclidean space, but by considering the sesquilinear

form 〈X,Y〉C = tr(X∗Y), we can also consider it as a complex inner product
space, which we denoteMn

C. It is easy to check that the matricesJjq are mutually
orthogonal in this space:

tr(J∗jq Jkr ) =
{

mj − q if j = k andq = r ,
0 otherwise.

(2.1)

We denote
√−1 by i .

Our key tool is the following result from [1]: it describes a smooth reduction
of any matrix close tōX to a certain normal form.
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Theorem 2.2(Arnold Form). There is a neighborhoodÄof X̄ inMn,and smooth
maps P: Ä → Mn, B: Ä → Mm0, and λjq : Ä → C, such that P(X̄) = P̄,
B(X̄) = B̄,

λjq(X̄) =
{
λ̄j if q = 0,
0 otherwise,

for q = 0,1, . . . ,mj − 1 and j = 1,2, . . . , p, and

P(X)X P(X)−1 = Diag(B(X),0,0, . . . ,0)+
p∑

j=1

(
Jj 1+

mj−1∑
q=0

λjq(X)J
∗
jq

)
.

In fact the functionsλjq in the Arnold form are uniquely defined nearX̄ (al-
though the mapsP and B are not unique). To see this we again follow [1], con-
sidering theorbit of a matrix Z in Mm (the set of matrices similar toZ), which
we denote orbZ. Two nonderogatory matricesW and Z are similar if and only
if they have the same eigenvalues (with the same multiplicities), by considering
their Jordan forms. Equivalently, nonderogatoryW andZ are similar if and only
if their characteristic polynomials coincide or, in other words,

pr (W) = pr (Z) (r = 1,2, . . . ,m),

where pr : Mm
C → C is the homogeneous polynomial of degreer (for r =

0,1, . . . ,m) defined by

det(t I − Z) =
m∑

r=0

pr (Z)t
m−r (t ∈ C). (2.3)

(For example,p0 ≡ 1, p1 = − tr and pm = (−1)m det.) Hence ifZ ∈ Mm is
nonderogatory then we can define the orbit ofZ locally by

Ä ∩ orbZ = {W ∈ Ä: pr (W) = pr (Z) (r = 1,2, . . . ,m)}
for some neighborhoodÄ of Z.

In the caseZ = Jm we obtain

Ä ∩ orb Jm = {W ∈ Ä: pr (W) = 0 (r = 1,2, . . . ,m)}. (2.4)

Furthermore, by differentiating (2.3) with respect toZ at Z = Jm we obtain, for
sufficiently larget ,

m∑
r=0

∇ pr (Jm)t
m−r = −(t I − Jm)

−1 det(t I − Jm) = −
m−1∑
r=0

tm−r−1Jr
m,

so

∇ pr (Jm) = −Jr−1
m (r = 1,2, . . . ,m). (2.5)
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(For a more general version of this result, see [5, Lemma 7.1].) These gradients
are linearly independent, so (2.4) describes orbJm locally as a manifold of codi-
mensionm, with normal space

Norb Jm(Jm) = span{(Jr−1
m )∗: r = 1,2, . . . ,m}

(cf. [1, Theorem 4.4]).
The following result is an elementary presentation of the basic example of

Arnold’s key idea.

Lemma 2.6. Any matrix Z close to Jm is similar to a unique matrix(depending
smoothly on Z) in Jm + Norb Jm(Jm).

Proof. We need to show the system of equations

pr

(
Jm +

m∑
k=1

λk

m− k+ 1

(
Jk−1

m

)∗) = pr (Z) (r = 1,2, . . . ,m)

has a unique small solutionλ(Z) ∈ Cm for Z close toJm, whereλ is smooth and
λ(Jm) = 0. But atZ = Jm we have the solutionλ = 0 and the Jacobian of the
system is minus the identity, by our gradient calculation (2.5) and a special case
of the orthogonality relationship (2.1). The result now follows from the inverse
function theorem.

Theorem 2.7(Arnold Form Is Well Defined). The functionsλjq in Theorem2.2
are uniquely defined on a neighborhood ofX̄.

Proof. Suppose we have another Arnold form defined, analogously to Theo-
rem 2.2, on a neighborhood̃Ä of X̄ by smooth maps̃P, B̃, andλ̃jq for eachj and
q. By continuity of the eigenvalues we know the matrices

J∗mj
+

mj−1∑
q=0

λjq(X)J
q
mj

and J∗mj
+

mj−1∑
q=0

λ̃jq(X)J
q
mj

have the same eigenvalues forX close toX̄ and j = 1,2, . . . , p. Since they are both
nonderogatory they are similar. Hence, by the preceding lemma,λjq(X) = λ̃jq(X)
for all j andq, as required.

Now we can give a precise definition of the active manifold we discussed in the
previous section.

Definition 2.8. With the notation of the Arnold form above, theactive manifold
M at X̄ is the set of matricesX in Ä ⊂ Mn satisfying

λjq(X) = 0 (q = 1,2, . . . ,mj − 1, j = 1,2, . . . , p),
Reλj 0(X) = β ( j = 1,2, . . . , p),

for some realβ.
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The following result describes the active manifold more intuitively:

Theorem 2.9(Structure of Active Manifold). A matrix X close toX̄ lies in the
active manifoldM if and only if there is a matrix P close tōP, a matrix B close to
B̄ with spectral abscissa strictly less thanα(X), and a vectorλ close toλ̄ whose
components have distinct imaginary parts and real parts all equal toα(X), such
that X has the same “active Jordan structure” asX̄:

P X P−1 = Diag(B,0,0, . . . ,0)+
p∑

j=1

(Jj 1+ λj Jj 0).

Proof. The “only if” direction follows immediately from the definition. The
proof of the converse is analogous to that of Theorem 2.7 (the Arnold form is well
defined).

Crucial to our analysis will be the following observation:

Proposition 2.10. The spectral abscissa is smooth on the active manifold.

Proof. This follows immediately from the definition, since

α(X) = Reλj 0(X) ( j = 1,2, . . . , p) (2.11)

for all matricesX in the active manifoldM.

Since we are concerned with optimality conditions involving the spectral ab-
scissa restricted to the active manifold, we need to calculate the tangent and normal
spaces toM at X̄. In the next result we therefore compute the gradients of the
functionsλjq (cf. [8, Theorem 2.4]).

Lemma 2.12. On the complex inner product spaceMn
C, the gradient of the func-

tion λjq : Ä→ C at X̄ is given by

(∇λjq(X̄))
∗ = (mj − q)−1P̄−1Jjq P̄.

Furthermore, on the Euclidean spaceMn, for any complexµ, the function
Re(µλjq): Ä→ R has gradient

(∇(Re(µλjq))(X̄))
∗ = (mj − q)−1P̄−1µJjq P̄,

for q = 0,1, . . . ,mj − 1 and j = 1,2, . . . , p.

Proof. Fix an integerk such that 1≤ k ≤ p and an integerr such that 0≤
r ≤ mk − 1. In [1, §4.1], Arnold observes that, in the spaceMn

C, the matrixJ∗kr
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is orthogonal to the orbit of̄X at P̄ X̄ P̄−1. Hence, for matricesX close toX̄, we
know

tr(Jkr (P(X)X P(X)−1− P̄ X̄ P̄−1))

= tr(Jkr (P(X)(X − X̄)P(X)−1+ P(X)X̄ P(X)−1− P̄ X̄ P̄−1))

= tr(Jkr P(X)(X − X̄)P(X)−1)+ o(X − X̄)

= tr(Jkr P̄(X − X̄)P̄−1)+ o(X − X̄).

But from the Arnold form (Theorem 2.2) we also know

P(X)X P(X)−1− P̄ X̄ P̄−1

= Diag(B(X)− B̄,0,0, . . . ,0)+
p∑

j=1

mj−1∑
q=0

(λjq(X)− λjq(X̄))J
∗
jq .

Taking the inner product withJkr and using the previous expression and the or-
thogonality relation (2.1) shows

(mk − r )(λkr (X)− λkr (X̄)) = tr(Jkr P̄(X − X̄)P̄−1)+ o(X − X̄),

which proves the required expression for∇λjq . The second expression follows
after multiplication byµ and taking real parts.

We deduce the following result:

Theorem 2.13(Tangent Space).The tangent space TM(X̄) to the active mani-
fold at X̄ is the set of matrices Z inMn satisfying

tr(P̄−1Jjq P̄ Z) = 0 (q = 1,2, . . . ,mj − 1, j = 1,2, . . . , p),
m−1

j Re tr(P̄−1Jj 0P̄ Z) = β ( j = 1,2, . . . , p),

for some realβ.

Proof. By definition, the active manifold is the set of matricesX in Ä ⊂ Mn

satisfying

Reλjq(X) = Re(iλjq(X)) = 0 (q = 1,2, . . . ,mj − 1, j = 1,2, . . . , p),
Reλj 0(X)− Reλ10(X) = 0 ( j = 2,3, . . . , p).

By Lemma 2.12 the gradients of these constraint functions are linearly independent
at X = X̄, so the tangent space consists of thoseZ satisfying

Re tr(P̄−1Jjq P̄ Z) = Re tr(P̄−1i Jjq P̄ Z) = 0

(q = 1,2, . . . ,mj − 1, j = 1,2, . . . , p),

Re tr(m−1
j P̄−1Jj 0P̄ Z)− Re tr(m−1

1 P̄−1J10P̄ Z) = 0 ( j = 2,3, . . . , p),

as claimed.
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To simplify our expressions for the corresponding normal space and related sets
of subgradients, we introduce three polyhedral sets in the space

Θ = {θ = (θjq): θj 0 ∈ R, θjq ∈ C (q = 1,2, . . . ,mj − 1, j = 1,2, . . . , p)}.
Specifically, we define

20 =
{
θ ∈ Θ:

p∑
j=1

mj θj 0 = 0

}
,

21 =
{
θ ∈ Θ:

p∑
j=1

mj θj 0 = 1

}
,

2
≥
1 = {θ ∈ 21: θj 0 ≥ 0, Reθj 1 ≥ 0 ( j = 1,2, . . . , p)}.

Notice that the set21 is the affine span of the set2≥1 , and is a translate of the
subspace20. We also define the injective linear map

3: Θ→ Mn

by

3θ =
p∑

j=1

mj−1∑
q=0

θjq J∗jq .

Corollary 2.14 (Normal Space). In the Euclidean spaceMn, the normal space
to the active manifoldM at the matrixX̄ is given by

NM(X̄) = P̄∗(320)P̄
−∗.

Proof. The proof of the previous result shows that inMn, the tangent space
TM(X̄) is the orthogonal complement of the set of matrices

P̄∗{J∗jq ,−i J ∗jq : q = 1,2, . . . ,mj − 1, j = 1,2, . . . , p}P̄−∗
∪ P̄∗{m−1

j J∗j 0−m−1
1 J∗10: 2≤ j ≤ p}P̄−∗.

Using the elementary relationship, for arbitrary vectorsa1,a2, . . . ,ap:

span{aj − a1: 2≤ j ≤ p} =
{

p∑
j=1

µj aj :
p∑

j=1

µj = 0

}
,

we see that the span of the second set is just

P̄∗
{

p∑
j=1

θj 0Jj 0:
p∑

j=1

mj θj 0 = 0

}
P̄−∗,

and the result now follows.
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It is highly instructive to compare this expression for the normal space to the
active manifold at the matrix̄X to the subdifferential (the set of subgradients)
of the spectral abscissa at the same matrix. In [5] Burke and Overton obtain the
following result:

Theorem 2.15(Spectral Abscissa Subgradients).The spectral abscissaα is reg-
ular at X̄, in the sense of[10], and its subdifferential is

∂α(X̄) = P̄∗(32≥1 )P̄
−∗.

Since the set32≥1 is a translated polyhedral cone with affine span a translate
of 320, we deduce the following consequence:

Corollary 2.16. The subdifferential∂α(X̄) is a translated polyhedral cone with
affine span a translate of the normal space NM(X̄).

Notice the following particular elements of the subdifferential:

Corollary 2.17. For every index1≤ j ≤ p we have

∇(Reλj 0)(X̄) ∈ ∂α(X̄).

Proof. This follows from Lemma 2.12 and Theorem 2.15 (spectral abscissa sub-
gradients).

3. Linearly Parametrized Problems

We are interested in optimality conditions for local minimizers of the spectral
abscissa over a given affine set of matrices. We can write this affine set as a
translate of the range of a linear map8̄: E→ Mn, whereE is a Euclidean space,
so our problem becomes

inf
Ā+R(8̄)

α,

whereĀ is a fixed matrix inMn. Equivalently, if we define a function̄f : E→ R
by

f̄ (z) = α(Ā+ 8̄(z)),
then we are interested in local minimizers off̄ . Suppose therefore that the point
z̄ in E satisfies

Ā+ 8̄(z̄) = X̄.

We henceforth make the following regularity assumption:
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Assumption 3.1. The matrix X̄ has nonderogatory spectral abscissa and the
map8̄ is injective and transversal to the active manifoldM at X̄.

Under this assumption we can compute the normal space to theparameter-
active manifold8̄−1(M− Ā) (the set of those parametersz for which Ā+ 8̄(z)
lies in the active manifold), and we can apply a nonsmooth chain rule to compute
the subdifferential off̄ .

Proposition 3.2(Necessary Optimality Condition).

N8̄−1(M−Ā)(z̄) = 8̄∗NM(X̄),

and

∂ f̄ (z̄) = 8̄∗∂α(X̄).
Furthermore, if X̄ is a local minimizer ofα on Ā + R(8̄), then the first-order
optimality condition

0 ∈ 8̄∗∂α(X̄)
must hold.

Proof. The first equation is a classical consequence of transversality (or see,
e.g., [10, Theorem 6.14]). Now, note thatα is regular atX̄, by Theorem 2.15
(spectral abscissa subgradients). Hence the horizon subdifferential∂∞α(X̄) is
just the recession cone of the subdifferential∂α(X), and is therefore a subset of
the normal spaceNM(X̄), by Corollary 2.14 (normal space). Thus transversality
implies the condition

N(8̄∗) ∩ ∂∞α(X̄) = {0},
so we can apply the chain rule [10, Theorem 10.6] to deduce the second equation.
If X̄ is a local minimizer, then̄z is a local minimizer off̄ , so satisfies 0∈ ∂ f̄ (z̄),
whence the optimality condition.

We know, by Proposition 2.10, that the restriction of the spectral abscissa to the
set of feasible matrices in the active manifold is a smooth function. Clearly, ifX̄
is a local minimizer for our problem, then in particular it must be a critical point
of this smooth function. The next result states that, conversely, such critical points
must satisfy a weak form of the necessary optimality condition.

Theorem 3.3(Restricted Optimality Condition). The matrixX̄ is a critical point
of the smooth functionα|M∩(Ā+R(8̄)) if and only if it satisfies the condition

0 ∈ aff 8̄∗∂α(X̄).
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Proof. First note X̄ is a critical point if and only ifz̄ is a critical point of
f̄ |8̄−1(M−Ā). Pick any index 1≤ j ≤ p, and define a smooth function coinciding
with f̄ on the parameter-active manifold:

g(z) = Reλj 0(Ā+ 8̄(z)) for z close toz̄.

By the chain rule we know∇g(z̄) = 8̄∗(Y), where

Y = ∇(Reλj 0)(X̄) ∈ ∂α(X̄),

by Corollary 2.17. Clearlȳz is a critical point if and only if this gradient lies in the
normal space to the parameter-active manifold:

∇g(z̄) ∈ N8̄−1(M−Ā)(z̄).

By Proposition 3.2 (necessary optimality condition), this is equivalent to

8̄∗(Y) ∈ 8̄∗(NM(X̄)),

or, in other words,

0 ∈ 8̄∗(Y + NM(X̄)).

But, sinceY ∈ ∂α(X̄), by Corollary 2.16 we know

aff ∂α(X̄) = Y + NM(X̄),

so the result follows.

We call critical points ofα|M∩(Ā+R(8̄)) active-critical.
The matrixY appearing in the above proof is a “dual matrix,” analogous to

the construction in [5, §10]. It is illuminating to consider an alternative proof,
from a slightly different perspective, whereY appears as a Lagrange multiplier.
By Theorem 2.15 (spectral abscissa subgradients), the condition 0∈ aff 8̄∗∂α(X̄)
holds if and only if there exists̄θ ∈ Θ satisfying

p∑
j=1

mj θ̄j 0 = 1, (3.4)

and a matrixȲ in Mn satisfying

8̄∗(Ȳ) = 0 (3.5)

and

Ȳ = P̄∗3(θ̄)P̄−∗. (3.6)
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On the other hand, by the definition of the active manifold (Definition 2.8), the
matrix X̄ is a critical point of the functionα|M∩(Ā+R(8̄)) if and only if the smooth
equality-constrained minimization problem

S AM(Ā, 8̄)



inf β

subject to mj (Reλj 0(X)− β) = 0,
(mj − q)λjq(X) = 0,

(q = 1,2, . . . ,mj − 1,
j = 1,2, . . . , p)

X − 8̄(z) = Ā,
β ∈ R, X ∈ Mn, z ∈ E,

has a critical point at(β, X, z) = (α(X̄), X̄, z̄). Consider the Lagrangian

L(β, X, z, θ,Y)

= β + Re tr(Y∗(X − 8̄(z))

+
p∑

j=1

(
θj 0mj (Reλj 0(X)− β)+

mj−1∑
q=1

Re(θ∗jq(mj−q)λjq(X))

)
.

We can write an arbitrary linear combination of the constraints as

L(β, X, z, θ,Y)− β.
Differentiating this linear combination at the critical point with respect toβ, z, and
X (using Lemma 2.12) shows

p∑
j=1

mj θj 0 = 0, 8̄∗(Y) = 0, and Y = P̄∗3(θ)P̄−∗, (3.7)

respectively. This impliesY = 0 and henceθ = 0, by transversality and Corol-
lary 2.14 (normal space), so the constraints have linearly independent gradients at
this point.

Thus the point of interest is critical if and only if there exist Lagrange multipliers
θ̄ andȲ (necessarily unique) such that the LagrangianL(β, X, z, θ̄ , Ȳ) is critical.
DifferentiatingL with respect toβ, z, andX again gives conditions (3.4), (3.5),
and (3.6), respectively, so the result follows.

The Lagrange multipliers̄θ and Ȳ also allow us to check the second-order
conditions for the above optimization problemS AM(Ā, 8̄). Summarizing this
discussion, we have the following result:

Theorem 3.8(Active-Critical Points). The following conditions are all equiva-
lent:

(i) X̄ is critical for the functionα|M∩Ā+R(8̄)).
(ii) (α(X̄), X̄, z̄) is critical for the problem S AM(Ā, 8̄).
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(iii) Equations(3.4), (3.5),and(3.6)have a solution(θ̄ , Ȳ).
(iv) 0 ∈ aff 8̄∗∂α(X̄).

Suppose these conditions hold. Then the Lagrange multiplier(θ̄ , Ȳ) is unique, and
we have

0 ∈ 8̄∗∂α(X̄)⇔ θ̄ ∈ 2≥1
and

0 ∈ ri 8̄∗∂α(X̄)⇔ θ̄ ∈ ri2≥1 .

Furthermore, X̄ is a strong minimizer ofα|M∩(Ā+R(8̄)) if and only if the Hessian
of the Lagrangian, namely

∇2
p∑

j=1

mj−1∑
q=0

Re(θ̄∗jq(mj − q)λjq(X)),

is positive definite on the space TM(X̄) ∩ R(8̄).

Proof. The first four equivalences and the uniqueness of the Lagrange multiplier
follow from the previous discussion. The next two equivalences are a consequence
of Theorem 2.15 (spectral abscissa subgradients) and the uniqueness of the La-
grange multiplier.

Only the second-order condition remains to be proved. ClearlyX̄ is a strong
minimizer ofα|M∩(Ā+R(8̄)) if and only if (α(X̄), X̄, z̄) is a strong minimizer ofβ
restricted to the feasible region of the problemS AM(Ā, 8̄). By standard second-
order optimality theory this is equivalent to the Lagrangian having positive-definite
Hessian on the tangent space to the feasible region which, by transversality, is just
TM(X̄) ∩ R(8̄).

Recall that the tangent space to the active manifoldTM(X̄) is given by The-
orem 2.13. Thus, in principle, the second-order optimality condition above is
checkable, since the second derivatives atX̄ of the functionsλjq in the Arnold
form (Theorem 2.2) are computable (see [8], for example): we do not pursue this
here.

4. Perturbation

We are now ready to prove our main result. It uses the notion of a nondegenerate
critical point (Definition 1.3).

Theorem 4.1(Persistence of Active Jordan Form).Suppose the matrix̄X is a
nondegenerate critical point for the spectral abscissa minimization problem

inf
Ā+R(8̄)

α,
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where the linear map̄8 is injective. Then, for matrices A close tōA and maps8
close to8̄, there is a unique critical point of the smooth functionα|M∩(A+R(8))

close toX̄. This point is a nondegenerate critical point for the perturbed problem

inf
A+R(8)

α,

depending smoothly on the data A and8: in particular, it has the same active
Jordan structure as̄X.

Proof. The matrix X̄ satisfies the first- and second-order conditions of Theo-
rem 3.8 (active-critical points), so using the notation of that result, we can apply
standard nonlinear programming sensitivity theory (see, e.g., [6, §2.4]) to deduce
the existence of a smooth function

(A,8) 7→ (β, X, z, θ,Y)(A,8),

defined for(A,8) close to(Ā, 8̄), such that

(β, X, z, θ,Y)(Ā, 8̄) = (α(X̄), X̄, z̄, θ̄ , Ȳ),

(β, X, z)(A,8) is the unique critical point near(α(X̄), X̄, z̄) of the perturbed
problemS AM(A,8), and its corresponding Lagrange multiplier is(θ,Y)(A,8).
Furthermore, by smoothness, the second-order conditions will also hold at this
point.

We now claim the pointX(A,8) is our required nondegenerate critical point.
Certainly all maps8 close to8̄ are injective. Furthermore, at any matrixX close
to X̄ in the active manifoldM, it is easy to check8 is transversal toM at X: in
particular, this holds atX(A,8).

Note thatX(A,8) is a strong minimizer ofα|M∩(A+R(8)), by the second-order
conditions. In particular, it lies in the active manifoldM and is close toX̄, so it
has the same active Jordan structure asX̄, and hence has nonderogatory spectral
abscissa. It remains to show 0∈ ri8∗∂α(X(A,8)).

Now, by analogy with (3.7), stationarity of the Lagrangian implies

8∗(P̂∗3(θ̂)P̂−∗) = 0, where P̂ = P(X(A,8)) and θ̂ = θ(A,8):

we simply reduce the matrixX(A,8) to Arnold form (2.2) and apply Lemma 2.12
atX(A,8) in place ofX̄. By Theorem 2.15 (spectral abscissa subgradients) applied
at X(A,8) we just need to show

θ(A,8) ∈ ri2≥1 ,

for (A,8) close to(Ā, 8̄). But this follows since

θ(A,8)) ∈ 21 = aff2≥1 ,
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and as(A,8) approaches(Ā, 8̄) we know

θ(A,8)→ θ̄ ∈ ri2≥1 ,

using our assumption that 0∈ ri8∗∂α(X̄)and Theorem 3.8 (active-critical points).
This completes the proof.

Our argument has interesting computational consequences. Under the assump-
tions of Theorem 4.1, the critical point of the perturbed problem infA+R(8) α is the
unique matrixX close toX̄ satisfying the system of equations

X = A+8(z),

P X P−1 = Diag(B,0,0, . . . ,0)+
p∑

j=1

(Jj 1+ λj Jj 0),

Reλj = β ( j = 1,2, . . . , p),
p∑

j=1

mj θj 0 = 1,

8∗(Y) = 0,

Y = P∗3(θ)P−∗,

for somez, P, B, λ, β, θ , andY close toz̄, P̄, B̄, λ̄, α(X̄), θ̄ , andȲ, respectively:
the solution must be unique, with the exception of the variablesP and B, by
Theorem 3.8 (active critical points).

Theorem 4.1 (persistence of Jordan form) shows that the active Jordan form
of a nondegenerate critical pointX for a spectral abscissa minimization problem
is robustunder small perturbations to the problem. If we know this active Jordan
form, and we can find an approximation toX, then we can apply an iterative
solution technique to the system of equations in the preceding paragraph to refine
our estimate ofX.

The definition of a nondegenerate critical point is, in part, motivated by the
second-order sufficient conditions for a local minimizer in nonlinear programming:
we require the objective function to have positive-definite Hessian on a certain
active manifold, and certain Lagrange multipliers have their correct signs. This
suggests the following question:

Question 4.2. Must nondegenerate critical points of spectral abscissa minimiza-
tion problems be local minimizers?

5. Examples

Our main result, Theorem 4.1 (persistence of active Jordan form), assumes the
critical matrix X̄ satisfies the four conditions of Definition 1.3 (nondegenerate
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critical points). Simple examples show three of these conditions are all, in general,
necessary for the result to hold.

Example 5.1(Necessity of Transversality). Consider the problem

inf

{
α

[
z 1
0 −z

]
: z ∈ R

}
,

which clearly has global minimizer̄z= 0, since f̄ = | · |. The map8̄: R→ M2,

defined by8̄(z) =
[

z 0
0 −z

]
, is not transversal to the active manifoldM at the

nonderogatory matrix̄X = J2 = Ā, since by Corollary 2.14 (normal space) we
know

NM(X̄) =
[

0 0
C 0

]
(5.2)

so, for example, [
0 0
1 0

]
∈ N(8̄∗) ∩ NM(X̄).

Nonetheless,̄X is a strong minimizer ofα onM∩(Ā+R(8̄)) = {X̄}. Furthermore,
we have

8̄∗∂α(X̄) =
{

Re tr

[
1 0
0 −1

] [ 1
2 0
θ 1

2

]
: Reθ ≥ 0

}
= {0},

so 0∈ ri 8̄∗∂α(X̄). (In this case, the chain rule∂ f̄ (z̄) = 8̄∗∂α(X̄) fails due to the
lack of transversality, so it is worth noting that we also have 0∈ ri ∂ f̄ (z̄).) Despite
this, perturbing the problem may change the Jordan form of the corresponding
critical point: for example, for all realε > 0 the function

α

[
z 1
ε −z

]
=
√
ε + z2

has unique critical pointz = 0, and the corresponding matrix
[

0 1
ε 0

]
has distinct

eigenvalues.

Example 5.3(Necessity of Strong Minimality). Consider the problem

inf{α(1+ z · 0): z ∈ R}.
The identically zero map̄8: R → C is transversal to the active manifoldM
(which is justC, locally) at the nonderogatory one-by-one matrixX̄ = 1 = Ā,
which corresponds to the critical pointz̄= 0. Furthermore, 0∈ ri 8̄∗∂α(X̄) = {0}.
However, nearby problems like infα(1+ z· ε) (for real nonzeroε) have no critical
points. In this case it is the strong minimizer condition that fails.
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Example 5.4(Necessity of Strict First-Order Condition). Consider the problem

inf

{
α

[
0 1
z 0

]
: z ∈ C

}
.

The map8̄: R → M2, defined by8̄(z) =
[

0 0
z 0

]
, is transversal to the active

manifold at the nonderogatory matrix̄X = J2 = Ā corresponding tōz= 0, using
(5.2). We have

8̄∗∂α(X̄) =
{

Re tr

[
0 1
0 0

] [ 1
2 0
θ 1

2

]
: Reθ ≥ 0

}
= R+,

so X̄ is a critical point, and is a strong minimizer ofα onM∩ (Ā+R(8̄)) = {X̄}.
However, for realε > 0, perturbing8̄ to8(z) =

[
εz 0
z εz

]
results in a unique point

inM ∩ (Ā+ R(8)), namelyX̄, and now

8̄∗∂α(X̄) =
{

Re tr

[
ε 1
0 ε

] [ 1
2 0
θ 1

2

]
: Reθ ≥ 0

}
= [ε,+∞),

so X̄ is no longer a critical point. In this case it is the failure of the strict first-order
condition 0∈ ri 8̄∗∂α(X̄) which causes our result to break down.

None of the examples above address the case where the critical matrixX̄ has
derogatory spectral abscissa. The lack of obvious examples suggests the following
problem:

Question 5.5(Derogatory Minimizers). Find a matrixX with derogatory spec-
tral abscissa such thatX is a strict local minimizer of the spectral abscissa on the
affine setA + R(8) and the linear map8 is transversal to the active manifold
at X.

Consider, for example, the case of then-by-n zero matrixX = 0, with n > 1.
Clearly the active manifoldM is the set of all small complex multiples of the
identity matrix. Hence if the map8 is transversal toM at 0, then its range has
real codimension at most 2. ThusR(8) certainly contains a subspace of the form
S= {Z: tr K Z = 0} for some nonzero matrixK . If K is a multiple of the identity,
then for all realε the diagonal matrix Diag(εi,−εi,0,0, . . . ,0) lies in Sand has
spectral abscissa 0, so 0 is not a strict local minimizer. On the other hand, ifK
is not a multiple of the identity, then an elementary argument showsS contains a
matrix Z with α(Z) < 0, so by consideringεZ for realε > 0 we see again that 0 is
not a local minimizer. In summary, the zero matrix can never solve Question 5.5.

We end with a simple example illustrating the main result.
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Example 5.6. Consider the spectral abscissa minimization problem

inf

α
−1 0 z1

0 z2 1
z∗1 −z2 0

 : z ∈ C2

 ,
and we consider the feasible solution

X̄ =
−1 0 0

0 0 1
0 0 0

 = Ā,

corresponding tōz = 0. Clearly X̄ has nonderogatory spectral abscissa 0. In our
notation we haven = 3, p = 1, m0 = 1, m1 = 2, λ̄ = 0, P̄ = I , and B̄ = −1.
The spaceE is C2 and the map̄8: C2→ M3 is defined by

8(z) =
 0 0 z1

0 z2 0
z∗1 −z2 0

 .
It is clearly injective, with adjoint̄8∗: M3→ C2 defined by

8̄∗(Y) = (y13+ y∗31, y22− y32).

The space2 is R× C and we have

20 = {(θ10, θ11): θ10 = 0},

and

2
≥
1 = {(θ10, θ11): θ10 = 1

2, Reθ11 ≥ 0},
so

NM(X̄) =

0 0 0

0 0 0
0 θ11 0

 : θ11 ∈ C

 .
Thus8̄ is transversal toM at X̄. Furthermore,

∂α(X̄) =

0 0 0

0 1
2 0

0 θ11
1
2

 : Reθ11 ≥ 0

 ,
so the Lagrange multipliers are given by

(θ̄10, θ̄11) = ( 1
2,

1
2) ∈ ri2≥1 and Ȳ =

0 0 0
0 1

2 0
0 1

2
1
2

 .
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Hence, by Theorem 3.8 (active critical points), 0∈ ri 8̄∗∂α(X̄). (Alternatively,
direct calculation shows̄8∗∂α(X̄) = {(0, 1

2 − θ11): Reθ11 ≥ 0}.)
It remains to check that̄X is a strong minimizer ofα|M∩(Ā+R(8̄)). Checking

this directly by Theorem 3.8 involves computing the second derivatives of the
functions in the Arnold form: we avoid this by a direct calculation.

By transversality, the tangent space to the feasible region is

TM∩(Ā+R(8̄))(X̄) = TM(X̄) ∩ R(8̄) =

 0 0 z1

0 0 0
z∗1 0 0

 : z1 ∈ C

 .
Hence if the matrixX is close toX̄ inM ∩ (Ā+ R(8̄)), then

X =
−1 0 z1

0 z2 1
z∗1 −z2 0

 with z2 = o(z1).

This matrix has characteristic polynomial

λ3+ (1− z2)λ
2− |z1|2λ+ z2(1+ |z1|2).

The derivative of this polynomial,

3λ2+ 2(1− z2)λ− |z1|2,

has roots

1
3((z2− 1)± ((1− z2)

2+ 3|z1|2)1/2).
The root with largest real part is

1− z2

3

((
1+ 3|z1|2

(1− z2)2

)1/2

− 1

)
∼ |z1|2

2

for smallz. By Gauss’s theorem, the derivative has roots in the convex hull of the
roots of the characteristic polynomial, so

α(X) ≥ |z1|2
3
∼ ‖z‖

2

3

for small z. Thus X̄ is a strong minimizer on the tangent space to the feasible
region, as required.

In conclusion,X̄ is a nondegenerate critical point for the original spectral ab-
scissa minimization problem. Hence, by Theorem 4.1 (persistence of active Jordan
form), for any small perturbation to the problem there is a nondegenerate critical
point close toX̄ with the same active Jordan structure.
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