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ABSTRACT. Primal and dual nondegeneracy conditions are defined for
semidefinite programming. Given the existence of primal and dual so-
lutions, it is shown that primal nondegeneracy implies a unique dual
solution and that dual nondegeneracy implies a unique primal solution.
The converses hold if strict complementarity is assumed. Primal and
dual nondegeneracy assumptions do not imply strict complementarity,
as they do in LP. The primal and dual nondegeneracy assumptions imply
a range of possible ranks for primal and dual solutions X and Z. This
is in contrast with LP where nondegeneracy assumptions exactly deter-
mine the number of variables which are zero. It is shown that primal
and dual nondegeneracy and strict complementarity all hold generically.
Numerical experiments suggest probability distributions for the ranks of
X and Z which are consistent with the nondegeneracy conditions.

1. DuALITY AND COMPLEMENTARITY

Let 8™ denote the set of real symmetric » X » matrices. Denote the di-
mension of this space by

n* =n(n+1)/2. (1)
The standard inner product on 8™ is

AeB =tr AB = Zaijbij-
(]

By X > 0, where X € 8", we mean that X is positive semidefinite. The
set K = {X € §" : X = 0} is called the positive semidefinite cone. The
constraint X > 0 is equivalent to a bound constraint on the least eigenvalue
of X, which is not a differentiable function of X.

Consider the semidefinite programming (SDP)

min CeX 9
st. AreX =0by k=1,...,m; X =0. (2)
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Here C' and Ag, k = 1,...,m, are all fixed matrices in §”, and the unknown
variable X also lies in §™. The dual of SDP is
max bTy (3)
st YiLiwAr+Z2=C; Z=0

where 7 is a dual slack matrix variable, which also lies in §™. More generally,
one may consider SDP in a space of block diagonal symmetric matrices,
reducing to linear programming (LP) in the case that all block sizes are
one. All definitions and results in this paper are easily extended to the block
diagonal case.

For feasible X, y, Z the duality gap is X e Z = tr X 7, since

CoeX—btTy=ZeX+> yAreX —bly=XeZ>0.
k=1

The following are assumed to hold throughout the paper.

Assumption 1. There exists a primal feasible point X > 0, and a dual
feasible point (y, Z) with Z > 0.

Assumption 2. The matrices Ax, kK = 1,...,m, are linearly independent,
i.e. they span an m-dimensional linear space in §™.

Assumption 1 (a Slater condition) implies (see e.g. [NN94]) that the duality
gap X e Z = 0 for optimal solutions (X, y, 7). As is well known, this implies
the complementary condition

XZ=0. (4)

To prove this, observe that X > 0, Z > 0 and tr XZ = 0 imply that the
matrix X1/2ZX1/? is symmetric, positive semidefinite, and has zero trace. It
follows that X1/27X1/2 = 0, and therefore that X Z = 0.

The complementarity condition (4) implies that X and Z commute, so they
share a common system of eigenvectors. Thus we have:

Lemma 1. Let X and (y, Z) be respectively primal and dual feasible. Then
they are optimal if and only if there exists Q € R™ ™, with QTQ = I, such
that

X = Q Diag(Ah try A'rL) QT7 (5)
Z = Q Diag(wh s 7“’“) QT7 (6)
and
Aw;=0,1=1,---,n (7)
all hold.

Equation (7) expresses complementarity in terms of the eigenvalues of X
and Z. If X has rank r and Z has rank s, complementarity implies r + s < n.
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Definition 1. Assume X7 = 0, with r and s respectively the ranks of X
and Z. Strict complementarity holds if r4+ s = n, i.e. for each i € {1,...,n},
exactly one of the two conditions A; = 0 and w; = 0 holds. We say that a
semidefinite program satisfies strict complementarity if strict complementar-
ity holds for every primal feasible X and dual feasible Z satisfying X Z = 0.

2. NONDEGENERACY AND STRICT COMPLEMENTARITY

In this section we define nondegeneracy for SDP. To some extent our dis-
cussion is motivated by work on eigenvalue optimization by Overton and
Womersley [OW95] and Shapiro and Fan [SF95]. Shapiro [Sha96] gives re-
lated results and extends them to nonlinear SDP’s.

Consider the set

M, ={X €8": rank (X) =r}.

Since the eigenvalues of a matrix X are continuous functions of X, it is clear
that, for r > 0, the boundary of M, is

oM, =MouU---UM,_;.
Let
MF=KNM,={Xe€8": X >0 and rank (X) = r}.
Then the boundary of K is given by
OK=MFu---uM}_, (8)

and the interior of K is
Int K = M.

Before going further, let us consider analogous definitions for the nonneg-
ative orthant 7 = {z € R™ : 2 > 0}. Consider the set

L, ={z € R"™ : 2 has exactly r nonzero elements}.
For r > 0 the boundary of £, is
0L, = LoU---UL,_y.

Let
Lr=JnCL,.
The boundary of 7 is
0T =LFu---ULl (9)
and the interior of 7 is
Int 7 = L.

However, the decompositions (8) and (9) have very different characters. The
set L} is not connected, except in the cases r = 0 and r = n. For example,
for n = 2, the set £ consists of the two positive coordinate axes (excluding
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the origin). By contrast, the set M is a path-connected smooth submanifold
of §” for all r, 0 < r < n. For example, in the case n = 2, we have

mi={[2 3]s az0 52004550 0= +vas),
a connected, smooth submanifold of S2.
Let X be primal feasible with rank (X) = r and
X =Q Diag(A,..., A, 0,--+,0) QT (10)
where QT(Q) = I. The tangent space to M, at X is [Arn71]
Uu v
0

TX:{Q VT

QT . Uesr"/eRan—r}.

Recalling the notation (1), dim7x = r2 +r(n —r) = n2 — (n—r)%. For
AX € Tx we have

QT(X+€A)()Q: I:Diag(Al,,Ar)+€U 6V:|

VT 0
Thus X + ¢AX is not contained in K, for ¢ > 0, unless V = 0.
Definition 2. X is primal nondegenerate if it is primal feasible and
Tx + N =87, (11)
where
N={Y eS8 : A,eY =0 for all k}. (12)

We say that a semidefinite program satisfies primal nondegeneracy if every
primal feasible X is primal nondegenerate.

Theorem 1. Let X be primal feasible with rank (X) = r. A necessary
condition for X to be primal nondegenerate is that

(n— r)5 <n?—m. (13)

Furthermore, let Q1 € R™" and Qq € R™*"=7) respectively denote the first
r columns and the last n — r columns of () given by (10). Then X is primal
nondegenerate if and only if the matrices

By = QT ArQ1 QT ArQ2
QT A1 0

are linearly independent in S™.

L k=1,...,m (14)

Proof. Inequality (13) follows directly from Definition 2, since dim 7x =

n? — (n —r)? and dim N = n? — m. Equation (11) is equivalent to

T ON+ = {0} (15)
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where T¢ and At are respectively the orthogonal complements of Tx and
N, namely
L 0 0

N+t =Span{A;}.
If the By, are linearly dependent, there exist 8 not all zero such that > 8y By =

0. This contradicts (15), since then 3 6x Ay € T. Conversely, if the By are
linearly independent, (15) holds. O

QT : We S”‘T}

and

Note that Theorem 1 holds for any () satisfying (10).

Theorem 2. Let X be primal nondegenerate and optimal. Then there exists
a unique optimal dual solution (y, 7).

Proof. By Assumption 2, a dual optimal solution (y, Z) exists, so that com-
plementarity holds. As above, let ()1 and ()7 respectively denote the first r
columns and the last n — r columns of ) given in (10). Any Z satisfying the
complementarity condition X Z = 0 must be of the form

7 =QWQ7
for some W € §"~", so the feasibility condition (3) requires the existence of
g€ R™ and W € §"" such that

QWQT +> grAr=C.
k=1

Theorem 1 guarantees that any solution of this linear system is unique. [J

Note that if we assume () satisfies (6) as well as (10) we find that W =
Diag(wr41,...,wn).

Now we turn to dual nondegeneracy. Let (y,7) be dual feasible with
rank (7) = s and

Z = Diag(0,...,0,wp—s41,...,wy) QT (16)
with QTQ = I. The tangent space to M at Z is
0 Vv
TZ = {Q I:‘/T W

We have dim(T7) = % + s(n — s) = n? — (n — s)°.

QT : Ve R Wwe Ss} . (17)

Definition 3. The point (y,7) is dual nondegenerate if it is dual feasible
and Z satisfies

Tz + Span{A;} = S". (18)

We say that a semidefinite program satisfies dual nondegeneracy if every dual
feasible (y, Z) is dual nondegenerate.
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Theorem 3. Let (y,7) be dual feasible with rank (7) = s. A necessary
condition for (y, Z) to be dual nondegenerate is that

(n—s)® < m. (19)

Furthermore, let Q~1 e R™("=3) gnd Q~2 € R™** respectively denote the
first n — s and the last s columns of Q) given by (16). Then (y,7) is dual
nondegenerate if and only if the matrices

Br=[QT @], k=1,....m (20)
span §"7°.
Proof. It is an immediate consequence of the definition. O
Note that Theorem 3 holds for any () satisfying (16).

Theorem 4. Let (y,7) be dual nondegenerate and optimal. Then there ex-
ists a unique optimal primal solution X .

Proof. By Assumption 2, a primal optimal solution X exists. As above let
@1 and @2 respectively denote the first n — s columns and the last s columns
of @ given by (16). Any X satisfying the complementarity condition XZ=0
must be of the form

X =Q0Qf
for some U € 8§"~*. Thus the feasibility condition (2) reduces to
(@lTAkQI) oU=by, k=1,...,m (21)

Theorem 3 guarantees that any solution of this linear system is unique. [J

Note that if we assume () satisfies (5) as well as (16) we find that U =
Diag(A1, ..., An_s).

Note also the distinction between the partitionings of ) used in Theorems
1 and 3. The former uses ) = [ Q2] where Q1 has r columns and the latter
uses () = [@1 @2] where @1 has n — s columns. These partitionings are the
same if and only if r 4+ s = n, i.e. strict complementarity holds.

It is instructive to compare our SDP nondegeneracy definitions with those
of the LP

min ¢’z subject to Az =b, z > 0,

where A € R™*™. Suppose that r is the number of nonzero primal solution
variables z;, with z,41 = --- =z, = 0, and s is the number of corresponding
nonzero dual slacks z;, with 2y = --- = 2z,_, = 0. By complementarity,
r + s < n. Consider the partitionings

A=[A; Aj] and A = [A; A,]

where A; has r columns and /L has n — s columns. These partitionings are
identical if strict complementarity holds. LP primal nondegeneracy states
that the m rows of A; must be a linearly independent set in R”, which
requires r > m. LP dual nondegeneracy states that the m rows of A, should
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span R"™°, which requires s > n — m. Combined with the complementarity
condition r + s < n, these conditions imply r = m and s = n — m. Thus
in LP, primal and dual nondegeneracy imply strict complementarity. This is
not the case for SDP.

Example. Let n = 3, m = 3, with b =[1 0 0],

00 0 100 00 1 010
C=100 0/,A4,=[0 0 0/,4,=[0 1 0|,45=1{1 0 0],
00 1 000 100 00 1

which has the solution

X = Diag(1,0,0), y=[00 0], Z = Diag(0,0,1).
That this solution is valid is easily verified by checking the optimality condi-
tions (2), (3), (4). We have Q = I, with the eigenvalues A; and w; equal to

the diagonal entries of X and Z respectively. Note that r = 1 and s = 1, so
strict complementarity does not hold. Let us check the primal nondegeneracy

condition. We have
1 0 0
Ql =10 3 QZ =10 3
0 0 1

so the matrices By, k = 1,2, 3, defined by (14), are

100 [00 17 [0 1 0
000,000, ]|t o of.
000 [1too [000

Since these are linearly independent, the primal nondegeneracy condition
holds, and the dual solution must be unique. Now let us check the dual
nondegeneracy condition. We have

oo
QII [0 1]7
0 0

and the matrices By, k = 1,2, 3, defined by (20), are given by

oo o V[ o)

Since these span S?, the dual nondegeneracy condition holds, and the primal
solution must be unique. Note especially that, in this example, strict comple-
mentarity fails to hold even in the presence of primal and dual nondegeneracy.

Theorems 2 and 4 show that primal and dual nondegeneracy respectively
imply dual and primal unique solutions. The converses are true assuming
strict complementarity:

Theorem 5. Suppose that X and (y,Z) are respectively primal and dual op-
timal solutions satisfying strict complementarity. Then if the primal solution
X is unique, the dual nondegeneracy condition must hold, and if the dual
solution (y,7) is unique, the primal nondegeneracy condition must hold.
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Proof. Let @) satisfy conditions (10) and (16), as in Lemma 1. Strict comple-
mentarity states that r + s = n, so the partitionings of () used in Theorems
1 and 3 are the same. Thus

X =@, Diag(A,...,A) Y, 7z=0Q, Diag(wr41,- .. ,wn) QT.

Suppose first that the dual nondegeneracy assumption (18) fails to hold. We
shall show that in this case X cannot be a unique primal solution. Since Z
is an optimal dual solution, complementarity states that any optimal primal
solution X must satisfy

X =QUQT

for some U € 8", and so the primal feasibility condition (2) reduces to

(QTAQ1) o U = by, k=1,...,m.

Because the dual nondegeneracy assumption does not hold, the solution set
of this equation is not unique, but holds on an affine subset of §”, say U, with
positive dimension. The condition that X = 0 holds if and only if U > 0. But
the particular choice U = Diag(\1, ..., A,) lies in U and is positive definite,
so there is an open set in U for which the same is true. Every such U defines
an X which satisfies the optimality conditions.

Now suppose that the primal nondegeneracy assumption (11) fails to hold.
We shall show that in this case (y,7) cannot be a unique dual solution.
Complementarity states that any solution Z must satisfy

7 =Q,wQT

for some W € 8%, and so the dual feasibility condition (3) reduces to the
solvability of

QWQT + > kA =C
k=1

forsome § € R™ and W € §°. Because the primal nondegeneracy assumption
does not hold, the solution set of this equation is not unique, but holds on
an affine subset of §° x R™, say W, with positive dimension. The condition
Z > 0 in (3) holds if and only if W > 0. But the particular choice (§ =
y, W = Diag(w41,...,wy)) lies in W with W positive definite, so there is
an open set in W for which the same is true. Every such W defines a Z which
satisfies the optimality conditions. O

If the assumption of strict complementarity is not made, it is possible that
the primal solution is unique even if the dual nondegeneracy assumption fails.
Consider Example 1, changing it so that

0 0 0
0 0 0
0 0 1

As = 0 0]

753:[0 0
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and therefore the dual nondegeneracy assumption does not hold. It follows
that U is not uniquely defined by (21): we can take

7=l
for any 8 € R. However, only § = 0 gives U > 0 and therefore X = 0.
It is convenient to introduce some further notation at this point. Let
Vk = |h] where h is the positive real root of h = k.
We then have:

Theorem 6. Suppose that X and (y,7) are respectively primal and dual
nondegenerate and optimal, with rank (X ) =r and rank (7) = s. Then

n—gng—mgrg% (22)
and
n—¥dm < s < /nZ — m. (23)

Proof. The lower bounds in (22), (23) are the necessary conditions (13) and
(19) given by Theorems 1 and 3. The upper bounds follow from the comple-
mentarity condition r + s < n. [l

The ranges of possible values for the ranks of solutions X and Z stand in
contrast with LP, where nondegeneracy assumptions give precise formulas for
the number of nonzero primal and dual variables. In fact, (22), (23) reduce
to equalities only in the cases m = 0 (r = 0, s = n) and m = n? (r = n,
s =0).

Pataki [Pat95] has shown that there always exist optimal solutions X and 7
satisfying the upper bounds in (22) and (23). Nondegeneracy assumptions are
not required for these results. However, without nondegeneracy assumptions
the upper bounds need not hold for all solutions, and the lower bounds may
not hold for any solution.

We now compare our nondegeneracy conditions with that given by An-
derson and Nash [AN87, p.21] in the context of infinite-dimensional LP over
general cones. Let By be the linear span of the face of K generated by X (the
face of K containing X and having minimal dimension). The Anderson-Nash
nondegeneracy condition applied to SDP is

Bx +N = S" (24)
It is well known, e.g. [Tau67, p.182], that
BX:{Q[(O] gQT:UeST}, (25)

where () satisfies (10). To prove this, note that for AX in (25),

Diag(A1, ..., A) + €U 0]

QT (X +eAX)Q = [ 0 0
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so that X + eAX € M} C K for sufficiently small €. This is not true for
AX ¢ Bx. We have Bx C Tx, with dim Bx = r?. Likewise

0 0
where () satisfies (16), and so the Anderson-Nash nondegeneracy condition
applied to the dual is

QT WGSS}

Bz + Span{A} = S". (26)
Assumptions (24) and (26) imply that
752 m  and 852 n?—m

must both hold. However, these inequalities can never hold simultaneously,
except in the trivial cases m = 0 and m = n?, because r + s < n. The
relationship between the Anderson-Nash conditions and ours is clarified by
noting that (13) and (19) can be written

fr§+7‘(n— r)>m and 554—8(71— s) > n? = m.
Anderson and Nash define X to be basic if
Bx NN ={0}. (27)

They show that a point is basic if and only if it is an extreme point of the
feasible set, and, that if an optimal solution exists, there is a basic optimal
solution. This provides another way to recover Pataki’s results since (27)
implies
dimBx < n? —dim N
i.e. B
r? < m.

We also have:

Theorem 7. Suppose that X and (y,7) are respectively primal and dual
optimal solutions satisfying strict complementarity. Then X is basic if and
only if the dual nondegeneracy condition holds.

Proof. Since r + s = n, we have Bx = T+ (see (25) and (17)). Thus the
condition that X be primal basic, namely (27), is equivalent to the condition
that (y, Z) be dual nondegenerate, namely (18). O

3. GENERICITY AND TRANSVERSALITY

Primal nondegeneracy, dual nondegeneracy and strict complementarity are
all generic properties of semidefinite programs, in a sense that we shall make
precise. We begin by noting that, assuming strict complementarity is a
generic property, it is intuitively obvious from Theorem 5 that the primal
and dual nondegeneracy conditions hold generically for optimal points. This
is because if, for example, the dual nondegeneracy condition fails to hold at
an optimal solution, the primal solution is not unique, so the matrix C is
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orthogonal to a face of the primal feasible region. This is an obviously non-
generic property. In fact, we show below that primal and dual nondegeneracy
hold generically without any reference to strict complementarity.

The main results of this section are summarized in the next two theorems.

Theorem 8. Primal nondegeneracy is a generic property of semidefinite
programs. Similarly, dual nondegeneracy is generic.

Theorem 9. Strict complementarity is a generic property of semidefinite
programs.

In the remainder of this section, we precisely define the notion of genericity
and then prove Theorems 8 and 9. The proofs use the notion of transversality
from differential topology. A result similar to Theorem 8 is stated in [Sha96].
Theorem 9 does not seem to have appeared elsewhere. It is more appropriate
for this discussion to write a semidefinite program in a self-dual form [NN94].

Let £ denote the subspace of §™ spanned by Ay,...,A,. Then the primal
problem (2) can be written as
min CeX
st. XeD+LH X =0, (28)
while the dual problem (3) can be written as
min DeZ
st. ZeC+L, Z=0. (29)

Thus, for a fixed n and m, a semidefinite program is completely determined
by C, D, and £ with dim £ = m.

In what follows we must be careful to distinguish between a subspace £
and the choice of basis defining it, which is not unique. Let anm denote

the manifold of all linear subspaces of dimension m in §™ (the Grassman
manifold), and let V 5 denote the manifold of orthonormal m-frames in S"
(the Stiefel manifold), where an orthonormal m-frame is a set of m pairwise
orthogonal elements of S of unit length. Also let
my - Vngm — G 7

T (30)
denote the natural map which associates with an orthonormal m-frame the
subspace it spans. Both G 7 ~—and V 3 are smooth manifolds and m
is a smooth map [Boo75]. It is clear from (28) (or (29)) that semidefinite

programs are parametrized by triple

(C,D,L)eS"x 8" X G 3

We need the following basic definitions.
Definition 4. A subset E of R* is said to have measure 0 if for every € > 0

there exists a countable collection of k-dimensional cubes (or balls) Cy,Cs, . ..
whose union contains £ and whose total volume is less than e.
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Definition 5. A subset F of a k-dimensional manifold M is said to have
measure 0 if ¢(E N U) has measure 0 in R* for every chart (U, ¢) of M (see
[GPT74, p. 39]).

Remark 1. The map my in (30) is locally trivial in the following sense: every
point z € G 3 hasan open neighborhood U whose inverse image, 73 THU) C

V3,08 dlffeomorphlc to the product U x O™ (see [Hu66]). Here O™ denotes

the L1e group of orthogonal m x m matrices. One can then show that a subset
E C G 5~ has measure 0 in G 3 if and only if its inverse image 7y THE)

has measure 0in V

7

We are now ready to give a precise definition of genericity.

Definition 6. We say that a property P of semidefinite programs is generic
if it holds for almost all triples (C, D, L), that is the set of triples (C, D, L)
for which P fails to hold has measure 0 in §" X §" X G 5

Definition 7. Let f : M — N be a smooth map between smooth manifolds
M and N and let K C N be a submanifold. We say that f is transversal to
K at a point z € M if either f(z) ¢ K or else

Af (2) (T M) + Ty K = Ty (31)

Here 7, M denotes the tangent space to M at z and df(z) denotes the dif-
ferential of f at z. We say that f is transversal to K if the transversality
condition (31) is satisfied for every z € M.

The proof of the following Theorem can be found in [GP74, p. 68].

Theorem 10. Let F' : M x T — N be a smooth map between smooth
manifolds and let K be a submanifold of N. Fort € T define a smooth map
fi from M to N by fi(z) = F(z,t). Suppose that I is transversal to K.
Then f; is transversal to K for almost all t € T.

Proof of Theorem 8: Let F denote the set of (C,D,L)e 8" x 8" X G5

for which dual nondegeneracy fails. We need to show that F has measure 0.
In light of Remark 1 it is sufficient to prove that the set F of all

(C,D,A1,...,Ap) €S" x 8" X Vn;m
for which dual nondegeneracy fails has measure 0. Consider the map
F:RmxS”xS”an;m — §”
given by
F(y,C,D,Aq, ..., An) = C+§:yiA

The differential of this map has maximal rank at every point, i.e. F is a
submersion [GP74, p. 20]. It follows that F is transversal to any submanifold
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of §”. In particular it is transversal to each of the submanifolds Mg, s =

0,...,n. Forafixed t = (C, D, Ay,..., Ap), let
ft . Rm — Sn
be given by
fl‘(y) = F(y7C7D7A17 fee 7Am)
Clearly, we have df;(y)(R™) = Span{Aj}. Thus the transversality condition
(31) for fi at y is precisely equivalent to the dual nondegeneracy condition

(18) at the point (y, fi(y)). Applying Theorem 10 to the map I’ we conclude
that the set

Es={t=(C,D,Ay,...,An) | ft is not transversal to M}

has measure 0. Thus the set FoU---UF, C " X 8" XV 3 has measure

0 and it suffices to show that this set contains E. But if the semidefinite
program determined by t = (C, D, Ay, ..., A,,) does not satisfy dual nonde-
generacy, then there exists y € R™ and an integer s with 0 < s < n such
that 7 = fi(y) € Ms, Z = 0, but f is not transversal to M at y. Hence
(C,D,Aq,...,An) € FEs. The proof that primal nondegeneracy is generic is
similar. a

In order to prove Theorem 9 we need the following key lemma.

Lemma 2. Let r,s satisfy 0 < r,s <n and r + s < n. The subset W, 5 of
8™ x 8™ given by
W,,={(X,Z)|rank X =r,rank Z = s, and XZ = 0}
is a submanifold of dimension
d=n?— (n— (r—}—s))i.

Proof. 1t is sufficient to prove that for every (Xo, Zy) € W, 5 there exist open
sets U C 8™ x 8™ containing (X, Zo) and V C R? and a differentiable map
h 1V — U that is a homeomorphism from V onto U N W, .

Since Xg is of rank r, we can assume, by permuting the rows and columns
of both Xy and 7y, that X is of the form

o — |40 BL
7 |By ByA;'BT
with Ag € 8" nonsingular, and X7 is still equal to 0. Now write Zy as

s _[Fo FY
7 |l Go

where Fy € §". From XyZy = 0 we have that

Fy, = GuH
E, = HTF,
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where H = —ByAy". Therefore,

g HTGoH HTG,
O | GoH Go

and we conclude that Gy € §™" satisfies

rank Gy = rank 7, = s.

Again, by permuting rows and columns of Zy and X, we may assume that
(g is of the form
Go— KILg'Ky KT
Ky Lo
where Lo € &7 is nonsingular. Note that the 2 x 2 block structure of Xj
and Zj are not modified by these permutations. Furthermore, Kg is empty if
s =n — r. Now there exists an ¢ > 0 such that

Ae S, ||]A— Ag|]| < ¢ = A is nonsingular

and
L e &?®, ||L - Lo|| < ¢ = L is nonsingular.
Let U C 8™ x 8™ be the open set consisting of those pairs (X, Z) with

A BT Z_EFT M KT
B C|’"T|F G K L

for which ||A — Ag|| < € and ||L — Lg|| < €. Let
VS8 x Rrx(n—r) ¥ 8% % Rsx(n—r—s) o Rd
consist of all (A, B, L, K) such that ||A — Ag|| < ¢ and ||L — Lo|| < e. The

map

X:[

,WithGI[

. A BT A'BTGBA™! —A-'BT@E
h(Avaka):(lB BA_lBT]7[

~GBA™! G
where
G KT'L7'K KT
- K L
meets all the requirements. O

Proof of Theorem 9: Let
T=8"x8"x Gn;m,
and for W € 8", L € G 5, let W, and W, denote the orthogonal projec-
tions of W onto £ and L:L respectively. Now consider the map
F:8"xT—S8"xS8"
defined by
FW,t)=(D+ Wy, C+Wg), witht=(C,D,L).

Clearly the differential of I’ has maximal rank at every point, and so F is
transversal to all the submanifolds W, ; of §" x §". Applying Theorem 10,
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we conclude that for all r, s, with r + s < n, the maps fi(W) = F'(W,t) are
transversal to W, ; for almost all £ € 7.

Now let » + s < n and suppose that f; is transversal to W, ;. Then a
simple dimension count, using (31) and Lemma 2, shows that f;(W) ¢ W, ;
for all W € 8™. We have proved that for almost all ¢ the image of f; does
not intersect W, ; whenever r + s < n. Thus the set E of all ¢ such that the
image of f; intersects W, ; for some r, s with r + s < n has measure 0 in 7.
The result will follow if we show that the set E of all (C, D, £) for which the
corresponding semidefinite program does not satisfy strict complementarity
is contained in F.

Let (C, D, L) determine a semidefinite program that does not satisfy strict
complementarity. Thus there exists a primal feasible X and a dual feasible
Z such that (X, Z) € W, ; for some r, s with r + s < n. Let us write

X=D+1L,Z=C+1Ly, withLielt LyeCL

and let W = (X — D)+ (Z — C) € §". Clearly, with t = (C, D, L), we have
(W) = (X, Z) lies in W, 4, so that t € E. ]

4. RANK DISTRIBUTIONS

Now consider SDP’s whose data are distributed according to a given prob-
ability distribution, e.g. uniformly in [—1, 1], discarding those for which the
Assumptions do not hold. We may consider the probability that solutions X
and Z respectively have given ranks r and s. It follows from Theorem 8 that
the probability that » and s satisfy the bounds in (22), (23) is one. Further-
more, it follows from Theorem 9 that the probability that » 4+ s = n is one.
Consequently it is sufficient to consider r only. A natural question is: what
is the probability distribution describing the values that r takes in the range
(22)? We shall now show some experimental results addressing this question.
This is a promising area for further theoretical investigation.

In this experiment, we set n = 20. The self-dual property of semidefinite
programming implies that it is sufficient to consider one half of the possible
range of values for m. We chose to let m range from 10 to 100 in increments
of 10. For each value of m we considered a thousand randomly generated
problems. Each problem was determined by the following data:

Ay, ... AL, CeS™ beR™.

The matrices Ag, k = 1,...,m were taken to be symmetric with entries
uniformly distributed in the interval [—1,1]. The vector b and the matrix
C' were chosen to ensure that Assumption 1 was satisfied. More precisely,
random positive definite symmetric matrices X and Z and a random vector
7 € R™ were generated, and b was defined by by = A e )Z', k=1,...,m,
while C' was set to Z + > ieq UrAg. We solved the problems using a primal-
dual interior-point method (see [AHO96]).

Each row of Table 1 shows the number of times the rank r of X was
achieved for the various values of m in the first experiment. The entries
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m | 1| 2 3 4 5 6 7 8 9 10 |11 (12| 13
10 |22 | 766|212 | 0O
201 0 | 19 | 653 |325| 3

30 0 | 51 |635(314| 0 0

40 0 | 73 | 745|180 | 2 0

50 0 1 161|709 |129| 0 0

60 0 3 |280]666| 51 | 0 0

70 0 0 9 (4861492 13| 0 | O
80 0 0 | 55 670271 4 | 0] O
90 0 0 0 (160|712 128| 0 | O

100 0 0 5 345595550 |0

TABLE 1. Number of Occurrences of Rank(X') in 1000 Ran-
domly Generated Problems with n = 20

m | Bounds on Rank(X) | Bounds on Rank(Z)
10 1<r<4 16 <s<19
20 1<r<5 15<s<19
30 2<r<7 13<s< 18
40 3<r<8 12 <s< 17
50 3<r<9 11 < s <17
60 4<r<10 10<s< 16
70 4<r<11 9<s5<16
80 5 <r <12 8§ <s< 15
90 5 <r <12 8§ <s< 15
100 6 <r<13 7<s<14

TABLE 2. Generic Bounds on Ranks for n = 20

corresponding to values of r falling outside of the range (22) are left blank.
Table 2 gives the bounds (22) and (23) for the relevant values of m. The
results are consistent with the generic property of nondegeneracy. They also
show clearly that values of r in the center of its range are much more likely
to occur than values equal to the bounds.

We close by noting that the issues of primal and dual nondegeneracy are
fundamental to the analysis of convergence rates of primal-dual interior-point
methods for SDP. These issues are discussed in [AHO96].
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