
NONSMOOTH OPTIMIZATION VIA BFGS

ADRIAN S. LEWIS∗ AND MICHAEL L. OVERTON†

Abstract. We investigate the BFGS algorithm with an inexact line search when applied to non-
smooth functions, not necessarily convex. We define a suitable line search and show that it generates
a sequence of nested intervals containing points satisfying the Armijo and weak Wolfe conditions, as-
suming only absolute continuity. We also prove that the line search terminates for all semi-algebraic
functions. The analysis of the convergence of BFGS using this line search seems very challenging;
our theoretical results are limited to the univariate case. However, we systematically investigate the
numerical behavior of BFGS with the inexact line search on various classes of examples. The method
consistently converges to local minimizers on all but the most difficult class of examples, and even in
that case, the method converges to points that are apparently Clarke stationary. Furthermore, the
convergence rate is observed to be linear with respect to the number of function evaluations, with
a rate of convergence that varies in an unexpectedly consistent way with the problem parameters.
When the problem is sufficiently difficult, convergence may not be observed, but this seems to be
due to rounding error caused by ill-conditioning. We try to give insight into why BFGS works as
well as it does, and we conclude with a bold conjecture.

Key words. BFGS, quasi-Newton, nonsmooth, nonconvex, line search, R-linear convergence

AMS subject classifications. 90C30, 65K05

1. Introduction. This paper is concerned with the behavior of the BFGS (Broy-
den-Fletcher-Goldfarb-Shanno) variable metric (quasi-Newton) method with an inex-
act line search applied to nonsmooth functions, convex or nonconvex. A companion
paper [LO08] analyzes BFGS with an exact line search on some specific nonsmooth
examples.

It was shown by Powell [Pow76] that, if f : Rn → R is convex and twice continu-
ously differentiable, and the sublevel set {x : f(x) ≤ f(x0)} is bounded (x0 being the
starting point), then the sequence of function values generated by the BFGS method
with a weak Wolfe inexact line search converges to or terminates at the minimal value
of f . This result does not follow directly from the standard Zoutendijk theorem as one
needs to know that the eigenvalues of the inverse Hessian approximation Hk do not
grow too large or too small. The result has never been extended to the nonconvex case.
Indeed, very little is known in theory about the convergence of the standard BFGS
algorithm when f is a nonconvex smooth function, although it is widely accepted that
the method works well in practice [LF01].

There has been even less study of the behavior of BFGS on nonsmooth functions.
While any locally Lipschitz nonsmooth function f can be viewed as a limit of increas-
ingly ill-conditioned differentiable functions (see [RW98, Thm 9.67] for one theoretical
approach, via “mollifiers”), such a view has no obvious consequence for the algorithm’s
asymptotic convergence behavior when f is not differentiable at its minimizer. Yet,
when applied to a wide variety of nonsmooth, locally Lipschitz functions, not nec-
essarily convex, BFGS is very effective, automatically using the gradient difference
information to update an inverse Hessian approximation Hk that typically becomes
extremely ill-conditioned. A key point is that, since locally Lipschitz functions are

∗School of Operations Research and Information Engineering, Cornell University, Ithaca, NY
14853, U.S.A. aslewis@orie.cornell.edu. Research supported in part by National Science Founda-
tion Grant DMS-0806057.

† Courant Institute of Mathematical Sciences, New York University, New York, NY 10012, U.S.A.
overton@cs.nyu.edu. Research supported in part by National Science Foundation Grant DMS-
0714321.

1

differentiable almost everywhere, as long as the method is initialized randomly and an
inexact line search is used, it is very unlikely that an iterate will be generated at which
f is not differentiable. Under the assumption that such a point is never encountered,
the method is well defined, and linear convergence of the function values to a locally
optimal value is typical (not superlinear, as in the smooth case).

Although there has been little study of this phenomenon in the literature, the
frequent success of variable metric methods on nonsmooth functions was observed by
Lemaréchal more than 25 years ago. His comments in [Lem82] include:

We have also exhibited the fact that it can be good practice to use
a quasi-Newton method in nonsmooth optimization [as] convergence
is rather rapid, and often a reasonably good approximation of the
optimum is found; this, in our opinion, is essentially due to the fact
that inaccurate line-searches are made. Of course, there is no the-
oretical possibility to prove convergence to the right point (in fact
counterexamples exist), neither are there any means to assess the
results.
...this raises the question: is there a well-defined frontier between
quadratic and piecewise linear, or more generally, between smooth
and nonsmooth functions?

Lemaréchal’s observation was noted in several papers of Lukšan and Vlček [LV99,
LV01, VL01]. They wrote in [VL01]: “standard variable metric methods are rela-
tively robust and efficient even in the nonsmooth case. . . . On the other hand, no
global convergence has been proved for standard variable metric methods applied
to nonsmooth problems, and possible failures or inaccurate results can sometimes
appear in practical computations.” Motivated by the latter observation, combined
with the attraction of the low overhead of variable metric methods, Lukšan and
Vlček proposed new methods intended to combine the global convergence properties
of bundle methods [HUL93, Kiw85] with the efficiency of variable metric methods.
Other papers that combine ideas from bundle and variable metric methods include
[BGLS95, LS94, MSQ98, RF00].

Our interest is in the standard BFGS method [NW06, Chap. 6] applied directly to
nonsmooth functions without any modifications, except that care must be taken in the
line search. Although we are motivated by the potential use of BFGS as a practical
method, primarily in the nonconvex case, this paper is focused on understanding its
behavior on relatively simple examples, many of them convex. Our hope is that even
partial success in this direction will lead the way toward a more complete picture of
how BFGS behaves in general.

In Section 2 we give a detailed treatment of the line search. Standard line searches
for smooth optimization impose an Armijo condition on reduction of the function value
and a Wolfe condition controlling the change in the directional derivative. For the
latter condition, often a “strong” version is imposed, requiring a reduction in the ab-
solute value of the directional derivative, as opposed to a “weak” version that requires
only an algebraic increase. The weak version is all that is required to ensure positive
definiteness of the updated inverse Hessian approximation; nonetheless, it is popular
both in textbooks and software to require the strong condition, despite the substan-
tial increase in implementation difficulty, perhaps because this is the traditional route
to proving convergence results for nonlinear conjugate gradient methods on smooth
functions. For nonsmooth optimization, it is clear that enforcing the strong Wolfe
condition is not possible in general, and it is essential to base the line search on the

2

simpler weak Wolfe condition. The line search we describe is close to earlier methods
in the literature, but our analysis differs. We prove that the line search generates
a sequence of nested intervals containing points that satisfy the Armijo and Wolfe
conditions, assuming only that the function is absolutely continuous along the line.
We also prove that the line search terminates under slightly stronger assumptions, in
particular covering all semi-algebraic functions (not necessarily locally Lipschitz).

The success of BFGS and most other variable metric methods in the smooth case is
in large part because inexact line searches quickly find an acceptable step: eventually
the method always accepts the unit initial step. The behavior of BFGS with an
inexact line search on nonsmooth functions is complex: it is far from clear whether
the unit step will be well scaled. As an initial analysis of this crucial but difficult
question, we carefully consider the univariate case, which is surprisingly nontrivial
and offers substantial insight. In Section 3 we prove that, for f(x) = |x|, the method
converges with R-linear rate 1/2 with respect to the number of function evaluations.
In Section 4, we argue that the rate for the function max{x,−ux} is, for large u,
approximately 2−1/ log2 u.

In Section 5 we systematically investigate the numerical behavior of BFGS with
the inexact line search on various classes of examples. We find that the method
consistently converges to local minimizers on all but the most difficult class of ex-
amples, and even in that case, the method converges to points that are apparently
Clarke stationary. Furthermore, the convergence rate is observed to be linear with
respect to the number of function evaluations, with a rate of convergence that varies
in an unexpectedly consistent way with the dimension and parameters defining the
problem in each class. When the problem is constructed to be sufficiently difficult,
convergence may not be observed, but this seems to be due to rounding error caused
by ill-conditioning, not a failure of the method to converge in exact arithmetic.

In Section 6 we briefly consider alternative methods that are applicable to non-
smooth, nonconvex problems. We also mention our publicly available Matlab code
hanso, addressing the issues of stopping criteria and how to assess the quality of the
result.

We conclude in Section 7 with a bold conjecture.
An intuitive, although far from complete, argument for the success of BFGS

on nonsmooth problems goes as follows. Because the gradient differences may be
enormous compared to the difference of the points where they are computed, the in-
verse Hessian approximation typically becomes very ill-conditioned in the nonsmooth
case. Tiny eigenvalues of Hk correspond to directions along which, according to the
quadratic model constructed by BFGS, the function has a huge second derivative. In
fact, of course, f is not differentiable at the local optimizer being approximated, but
can be arbitrarily well approximated by a function with a sufficiently ill-conditioned
Hessian. As is familiar from interior point methods for constrained optimization, it is
this ill-conditioning of Hk that apparently enables the method to work so well. Re-
markably, it often happens that the condition number of Hk approaches the inverse
of the machine precision before rounding errors cause a breakdown in the method,
usually failure to obtain a reduction of f in the inexact line search. The spectral
decomposition of the final Hk typically reveals two subspaces along which the behav-
ior of f is very different: the eigenvalues that are not relatively tiny are associated
with eigenvectors that identify directions from the final iterate along which f varies
smoothly, while the tiny eigenvalues are associated with eigenvectors along which
f varies nonsmoothly. More specifically, when applied to partly smooth functions

3

[Lew03], it seems typical that BFGS automatically identifies the U and V-spaces as-
sociated with f at the approximate minimizer. Furthermore, even when Hk is very
ill-conditioned, the unit step is typically relatively well scaled, and this property does
not deteriorate as the iteration count k increases (although, as noted in Section 5.4, it
does seem to deteriorate as the dimension n increases). Mysteries that remain include
the mechanism that prevents the method from stagnating, the reason for the relative
well-scaledness of the unit step in the line search, and the condition measure of f that
determines the amazingly consistent linear rates of convergence that we observe.

A natural question is whether these observations extend to the well known limited
memory variant of BFGS. Our experience with this is minimal and we do not address
the issue here. However, we note that comments in the literature observing that
limited memory BFGS sometimes works well in practice on nonsmooth problems have
appeared occasionally: see [Lee98, ZZA+00]. Negative comments have also appeared
[Haa04, p.83],[YVGS08], leading the authors to propose modifications to the method.
Although we do not consider limited memory variants in this paper, in our opinion a
key change should be made to the widely used codes L-BFGS and L-BFGS-B [ZBN97]
so that they are more generally applicable to nonsmooth problems: include the weak
Wolfe line search defined in Section 2 as an optional alternative to the strong Wolfe
line search that is currently implemented.

2. The Line Search. We consider here an inexact line search for nonsmooth
optimization very close to one suggested by Lemaréchal [Lem81], and similar to anal-
ogous methods of Wolfe [Wol75] (for the convex case) and Mifflin [Mif77]. This line
search imposes an Armijo condition on reduction of the function value and a weak
Wolfe condition imposing an algebraic increase in the directional derivative along the
line. Our algorithm differs from theirs in one small respect: it only accepts points
at which the function is differentiable along the search direction. Avoiding BFGS
iterates at which the function f is nondifferentiable has some merits: in theory we
thereby rule out examples of failure due to null steps along the lines discussed in
[LO08, Section 3], and in practice, as implied by Lemaréchal’s quote in the previous
section, the fact that an inexact line search generally avoids such points is crucial for
the success of BFGS in practice. For structured functions and initial conditions, the
line search might indeed encounter nondifferentiable points. Our experiments, on the
other hand, use random starting points and Hessian approximations, avoiding non-
differentiable points almost surely. In any case, in the interests of broad practicality,
our implementation does not check for differentiability.

Let x̄ be an iterate of an optimization algorithm and p̄ be a direction of search.
Then the line search objective h is given by

h(t) = f(x̄ + tp̄)− f(x̄).

We seek a method for selecting a step under the following assumption.
Assumption 2.1. The function h : R+ → R is absolutely continuous on every

bounded interval, and bounded below. Furthermore, it satisfies

h(0) = 0 and s = lim sup
t↓0

h(t)
t

< 0.

Absolutely continuous functions may be characterized as indefinite integrals of inte-
grable functions [Roy63]. They are differentiable almost everywhere, and satisfy the
fundamental theorem of calculus. Lipschitz functions are absolutely continuous, as

4

are semi-algebraic functions.1 Hence if the function f is locally Lipschitz or semi-
algebraic, the line search objective h satisfies the absolute continuity assumption.

Given constants c1 < c2 in the interval (0, 1), we seek a weak Wolfe step, which
we define to be a number t > 0 satisfying the Armijo and Wolfe conditions

S(t) : h(t) < c1st (2.2)
C(t) : h is differentiable at t with h′(t) > c2s. (2.3)

Lemma 2.4. If the condition S holds at the number α > 0 but fails at the number
β > α, then the set of weak Wolfe steps in the interval [α, β] has nonzero measure.
Proof Define a number

t∗ = inf{t ∈ [α, β] : h′ ≤ c2s a.e. on [α, t]}.

Then h′ ≤ c2s a.e. on the interval [α, t∗], so

h(t∗)− h(α) =
∫ t∗

α

h′ ≤ c2s(t∗ − α) ≤ c1s(t∗ − α).

Since the condition S(α) holds,

h(t∗)− c1st
∗ ≤ h(α)− c1sα < 0,

so the condition S(t∗) holds. Since the condition S(β) fails, t∗ 6= β, so in fact t∗ < β.
By the definition of t∗, for all small δ > 0, condition C must hold on a subset of
the interval [t∗, t∗ + δ] of positive measure. But by continuity, the condition S holds
throughout this interval for small δ. 2

Theorem 2.5 (existence of step). Under Assumption 2.1, the set of weak Wolfe
steps has nonzero measure.
Proof The “lim sup” assumption ensures that there exists α > 0 satisfying

h(α)
α

< c1s

so condition S(α) holds. On the other hand, condition S(β) must fail for all large
β > 0 because the function h is bounded below. Now apply the lemma. 2

In fact, for the purposes of the above result, the “lim sup” in Assumption 2.1 could
be replaced by “lim inf”.

1The graph of a semi-algebraic function is a finite union of sets, each defined by a finite list of
polynomial inequalities.

5

2.1. Definition of the inexact line search. We next describe the method.
Algorithm 2.6 (line search).

α← 0
β ← +∞
t← 1
repeat

if S(t) fails, β ← t
else if C(t) fails, α← t
else STOP
if β < +∞, t← (α + β)/2
else t← 2α

end(repeat)
Each execution of the repeat loop involves trying one new choice of the step t. We
call such an execution a trial.

Theorem 2.7 (convergence). Whenever the above line search iteration termi-
nates, the final trial step t is a weak Wolfe step. In particular, it terminates under
the assumption

lim
t↑t̄

h′(t) exists in [−∞,+∞] for all t̄ > 0. (2.8)

If, on the other hand, the iteration does not terminate, then it eventually generates a
nested sequence of finite intervals [α, β], halving in length at each iteration, and each
containing a set of nonzero measure of weak Wolfe steps. These intervals converge to
a step t0 > 0 such that

h(t0) = c1st0 and lim sup
t↑t0

h′(t) ≥ c2s. (2.9)

Proof It is clear that if the line search terminates at t, both conditions S(t) and
C(t) hold. Suppose the iteration does not terminate. Eventually, the upper bound
β becomes finite, since otherwise condition S(2k) must hold for all k = 1, 2, . . .,
contradicting the boundedness assumption. Furthermore, from the update for β,
once β is finite, condition S(β) always fails.

Next, notice that eventually the lower bound α > 0. Otherwise, α is always zero,
and after the upper bound β becomes finite the trial step t keeps halving and the
condition S(t) keeps failing, contradicting the “lim sup” condition in Assumption 2.1.
Notice also that after any update to the lower bound α, the condition S(α) must hold.

Let us denote by [αk, βk] the sequence of intervals generated by the iteration. Once
αk > 0 and βk < ∞, the intervals are positive, finite, and halve in length at each
iteration, and the sequences (αk) and (βk) are monotonic increasing and decreasing
respectively. Hence there must exist a point t0 > 0 such that αk ↑ t0 and βk ↓ t0.
Furthermore, we know that the condition S(αk) holds and the condition S(βk) fails.

We deduce several consequences. First, by the continuity of the function h at the
point t0, we must have h(t0) = c1st0, so the condition S(t0) fails. On the other hand,
the condition S(αk) holds, so αk < t0 for all k. Now, Lemma 2.4 shows the existence
of a weak Wolfe step tk ∈ [αk, t0]. In particular, we know h′(tk) > c2s, so property
(2.9) follows.

Now suppose assumption (2.8) holds, and yet, by way of contradiction, that the
iteration does not terminate but instead generates an infinite sequence of intervals
[αk, βk] as above, shrinking to a point t0 > 0. Every αk is a trial step at some

6

iteration j ≤ k, so the condition C(αk) fails. By our assumption, the function h is
differentiable on some nonempty open interval (t′, t0), and hence in particular at αk

for all large k, and so must satisfy h′(αk) ≤ c2s. We deduce

lim
t↑t0

h′(t) ≤ c2s < c1s. (2.10)

On the other hand, h is continuous, so by the Mean Value Theorem there exists a
point γk in the interval (αk, t0) satisfying

h′(γk) =
h(t0)− h(αk)

t0 − αk
≥ c1st0 − c1sαk

t0 − αk
= c1s.

Since γk converges to t0 from the left, this contradicts inequality (2.10). 2

The above convergence result is not restricted to Lipschitz functions. In partic-
ular, assumption (2.8) holds for any semi-algebraic function h. By contrast with our
result, [Lem81] considers locally Lipschitz functions and assumes a “semismoothness”
property. As we now sketch, a very similar argument to the proof above covers that
case too.

Suppose the function h weakly lower semismooth at every point t̄ > 0: in other
words, it is locally Lipschitz around t̄ and satisfies

lim inf
t↓0

h(t̄ + sd)− h(t̄)
s

≥ lim sup
k

gkd

for d = ±1 and any sequence of Clarke subgradients gk of h at t̄ + skd where sk ↓ 0.
In the language of [?], this is equivalent to the function −h being “weakly upper
semismooth”. Suppose in addition that h is differentiable at every trial step. We
then claim that the line search terminates.

To see this, assume as in the proof that the iteration does not terminate, so we
obtain a sequence of points αk > 0 increasing to a point t0 > 0 such that h(t0) = c1st0,
the condition S(αk) holds, the condition C(αk) fails, and h is differentiable at αk, for
each k = 1, 2, 3, We deduce the inequalities

lim inf
s↓0

h(t0 − s)− h(t0)
s

≤ lim inf
k

h(αk)− h(t0)
t0 − αk

≤ lim inf
k

c1sαk − c1st0
t0 − αk

= −c1s

< −c2s

≤ lim sup
k

h′(αk)(−1),

which contradicts the definition of weak lower semismoothness.

2.2. The line search on a convex function. We now consider the complexity
of the line search applied to a convex function h.

Unlike the method of [Lem81], due to our different approach to nondifferentiable
points, our line search method may fail to terminate on some pathological functions,
even assuming convexity. For example, consider the function h : R+ → R defined by
h(t) = t2 − t for any number t of the form

tk =
k∑

j=0

(−2)−j ,

7

and for t equal to 0 or 2
3 or larger than 1. On the closed intervals between neighboring

points of this form, define h by linear interpolation. Then h is convex (although not
semi-algebraic), and has a piecewise linear graph with corners (tk, h(tk)) accumulating
at the point (2

3 ,− 2
9). If c1 = 2

3 , then the points satisfying the Armijo condition
S(·) constitute the interval (0, 2

3). For any c2 ∈ (c1, 1), the sequence of trial points
is then the sequence of partial sums t0, t1, t2, . . . above. The condition S(tk) fails
for even integers k and holds for odd k, and condition C(tk) always fails due to
nondifferentiability. Hence the line search does not terminate.

However, in the convex case we can bound the number of function trials that are
needed to generate a point inside an interval in which almost every point satisfies the
Armijo and Wolfe conditions.

Proposition 2.11 (complexity of line search). Consider a convex function h
satisfying Assumption 2.1. Then the set of weak Wolfe steps is an open interval
I ⊂ R+, with any points where h is nondifferentiable removed. Suppose I has left-
hand endpoint b > 0 and length a ∈ (0,+∞]. Define

d = max{1 + blog2 bc, 0}.

Then after a number of trials between

d + 1 and d + 1 + max
{

d +
⌊

log2

1
a

⌋
, 0

}
(interpreted in the natural way when a = +∞), the line search tries a step in I.
Proof By convexity, it is easy to see that the interval of interest is given by

b = inf{t > 0 : C(t) holds}
b + a = sup{t > 0 : S(t) holds}.

The line search behaves rather simply. It doubles the initial step until the trial satisfies
t > b. Assuming this step does not lie in the interval I, the condition S(t) must fail,
so the interval [α, β] used by the line search to bracket a weak Wolfe step is [0, t].
After this “doubling” phase, the method moves to a “bisection” phase, repeatedly
trying a point t equal to the midpoint of the current bracketing interval. As long as
this point lies outside I, the trial t replaces either the left or right endpoint of the
bracket, depending on whether t ≤ b or t ≥ b + a.

It is easy to see that the number of doubling steps is d, so the number of trials
needed in this phase is d + 1. After this phase, the bracketing interval has length 2d.
In fact, if the method continues, the interval I must be contained within the bracket
[2d−1, 2d], and has length a. To find a point in I, the bisection phase repeatedly halves
the length of the current bracket. Notice 2d−1 is a previous trial point. Hence we
need at most

h = max
{

d +
⌊

log2

1
a

⌋
, 0

}
further trials before trying a point in I. The result follows. 2

In the above result, consider the special case where b is large but a = 1, so the
interval I is (b, b + 1). Then the line search will perform a large number,

d = 1 + blog2 bc,
8

doubling steps, and then performs between zero and d additional bisection steps. The
point b lies in the interval [2d−1, 2d]. If b lies in the open unit interval 2d − (0, 1),
no further trials will be needed. If, on the other hand, b lies in the interval 2d−2 +
2d−1 − (0, 1), one further trial will be needed. Similarly, there exist two open unit
intervals of possible values of b requiring two further trials, four requiring three, and
more generally, 2m−1 unit intervals requiring m further trials, for m = 1, 2, . . . , d− 1.
If the point b was a random variable, uniformly distributed in the interval [2d−1, 2d],
the expected number of trials until we try a point in I is then

21−d · 0 + 21−d · 1 + 22−d · 2 + 23−d · 3 + · · ·+ 2−1 · (d− 1)
= 21−d(1 + 2 · 2 + 22 · 3 + · · ·+ 2d−2 · (d− 1))
= d− 2 + 21−d.

Thus the expected number of trials in the bisection phase is roughly log2 b, so the
expected total number of trials is about 2 log2 b.

3. Analysis for the Absolute Value. We now consider the behavior of the line
search given in Algorithm 2.6 when applied to the problem of minimizing the absolute
value function. Given a current nonzero iterate xk ∈ R (where k = 0, 1, 2, . . . is the
iteration counter), and a nonzero initial step γ ∈ R, we therefore apply the line search
to the function

h(t) = |xk + tγ|.

Assumption 2.1 becomes

γxk < 0 and s = −|γ|.

Since

h′(t) =
{
−|γ| (t < |xk|/|γ|)
|γ| (t > |xk|/|γ|),

the value of the Wolfe parameter c2 ∈ (0, 1) is irrelevant to the algorithm. It simplifies
our analysis, and causes no difficulty for the absolute value function, if we set the
Armijo parameter c1 = 0. The line search conditions then become

S(t) :|xk + tγ| < |xk|
C(t) :xk(xk + tγ) < 0.

We make one last slight modification to the line search algorithm: we terminate it
if we encounter the point zero (or in other words if t = −xk/γ). For the remainder
of this section, when we refer to the inexact line search as applied to the absolute
function x 7→ |x| we mean this version: 0 = c1 < c2 < 1 and terminating if we
encounter x = 0.

Using this line search method, we now consider the behavior of the BFGS method
for minimizing the absolute value. Clearly properties S and C guarantee

|xk+1| < |xk| and xkxk+1 < 0,

providing xk 6= 0 6= xk+1. The BFGS formula for the inverse Hessian approximation
reduces to the secant equation

Hk+1 =
2

|xk+1 − xk|
9

and hence the initial step for the next line search is

γ = −|xk+1 − xk|
2

sgn(xk+1).

To summarize, the iterates alternate signs, and the initial step in the line search has
size half the distance to the previous iterate.

The following very easy tool is basic in our analysis.
Lemma 3.1. Consider any integer a, and any number x in the interval (2−a−1, 2−a).

Then the unique integer r satisfying both the properties
(i) |x− 2−r| < x
(ii) x < 2−r

is r = a. More precisely, if r < a, then inequality (i) fails (in fact strictly), and if
r > a, then inequality (i) holds but inequality (ii) fails (in fact strictly).

Using this tool, the first application of the line search is easy to analyze.
Proposition 3.2 (first iteration). Consider the problem of minimizing the abso-

lute value function. Suppose that the initial point x0 lies in the interval (2−a−1, 2−a]
for some integer a, and that the initial step in the inexact line search is −1. Then the
line search terminates after 1 + |a| trials with the next iterate x1 = x0 − 2−a.
Proof We distinguish two cases. If a ≥ 0, then the line search tries in turn the
points

x0 − 2−r for r = 0, 1, 2,

Using Lemma 3.1, as long as r < a, the descent condition S fails, so the trial step
halves. Eventually r = a, and then Lemma 3.1 implies that both conditions S and C
hold, so the line search terminates.

On the other hand, if a < 0, then the line search tries in turn the points

x0 − 2−r for r = 0,−1,−2,

Using Lemma 3.1, as long as r > a, the Wolfe condition C(t) fails, so the trial step
doubles. Eventually r = a, and again the line search terminates. 2

An inductive argument now shows how the line search behaves on the subsequent
iterations.

Proposition 3.3 (subsequent iterations). Consider the problem of minimizing
the absolute value function using BFGS with the inexact line search. Suppose two
successive iterates xk and xk+1 are both nonzero. Then the next iterate is

xk+2 = xk+1 +
xk − xk+1

2r
,

where the number r > 0 is the minimal strictly positive integer for which the right-
hand side has absolute value strictly less than |xk+1|. The number of trials required
by the line search is exactly r.
Proof We can without loss of generality suppose xk < 0. Then, by our earlier
observations, we have 0 < xk+1 < −xk, and the initial trial step in the line search
takes us from the point xk+1 to the point

xk + xk+1

2
.

10

We now claim that the line search tries in turn the points

xk+1 −
xk+1 − xk

2r
for r = 1, 2, 3, . . . ,

until the descent condition S is satisfied, or equivalently, until the displayed quantity
has absolute value strictly less than |xk+1|: our result then follows.

The claim follows by induction. The choice r = 1 gives the first trial point, as we
have already argued. As long as the descent condition S fails, the line search halves
the trial step, thus incrementing the integer r by one. But as soon as we reach an
integer r such that the descent condition holds, then so does the Wolfe condition C,
by Lemma 3.1, so the line search terminates. 2

Remarkably, minimizing the absolute value function in the above fashion, starting
from the initial point x0, mimics exactly an algorithm for computing the alternating
binary expansion of x0 that is described in Appendix A.

Theorem 3.4 (BFGS on the absolute value). Given any positive number x0,
consider its alternating binary expansion

x0 =
m∑

j=0

(−1)j2−aj ,

where m is either a nonnegative integer or ∞ and a0 < a1 < a2 < · · · . Then applying
BFGS to minimize the absolute value function, using the inexact line search, with
initial point x0 and initial Hessian approximation 1, generates the iterates

xk =
m∑

j=k

(−1)j2−aj for all integers k ≤ m. (3.5)

Calculating the iterate x1 takes 1 + |a0| trials in the line search. For all k < m, given
the iterate xk, calculating the subsequent iterate xk+1 takes ak − ak−1 trials. If the
alternating binary expansion is finite (that is, m <∞), then BFGS terminates at zero
after finitely many line search trials. Otherwise, with respect to the number of trials,
the iterates xk converge to zero with R-linear rate 1

2 .
Proof We prove the most interesting case: m = ∞. The argument when x has a
finite alternating binary expansion is very similar.

We prove equation (3.5) by induction on k. The equation is trivially true when
k = 0. By Lemma A.1, we have 2−a0−1 < x < 2−a0 . The case k = 1 then follows
by Proposition 3.2, and the number of trials the line search needs to compute x1 is
1 + |a0|, as claimed.

Now suppose equation (3.5) holds for some given k, and also when k is replaced
by k + 1. By Lemma A.1, we know

2−ak+1−1 < (−1)k+1xk+1 < 2−ak+1 .

Furthermore, by Proposition 3.3, the next iterate is

xk+2 = xk+1 +
xk − xk+1

2r
= xk+1 + (−1)k2−ak−r

where the number r > 0 is the minimal strictly positive integer for which the right-
hand side has absolute value strictly less than |xk+1|. The number of trials required

11

by the line search is exactly r. Now Lemma 3.1 shows r = ak+1 − ak, and equation
(3.5) with k replaced by k + 2 follows. This completes the induction.

To calculate the R-linear convergence rate, notice that if the total number of trials
in all the line searches so far is i, where

|a0|+ ak−1 − a0 < i ≤ |a0|+ ak − a0

for some index k = 1, 2, 3, . . ., then the current error is

|xk| ∈ (2−ak−1, 2−ak),

which is bounded above by 2|a0|−a0−i. Hence, with respect to trials in the line search,
the convergence to zero in R-linear with rate at most 1

2 . Furthermore, since for all k
the error after |a0|+ ak − a0 trials is at least 2−ak−1, the rate 1

2 is exact. 2

As an example, consider the initial point

x0 =
4
7

= 1− 1
2

+
1
8
− 1

16
+ . . . =

∞∑
r=0

(2−3r − 2−3r−1)

After one trial in the line search, we arrive at the point x1 = −3/7. One more
trial takes us to the point x2 = 1/14. The next line search takes two trials before
terminating at the point x3 = −3/56. This pattern now repeats: the line search
between

x2j =
4

7 · 8j
and x2j+1 = − 3

7 · 8j
for j = 1, 2, 3, . . .

takes just one trial, but from x2j+1 to x2j+2 takes two trials. It is easy to confirm
that this is exactly the behavior predicted by Theorem 3.4.

Theorem 3.4 shows that, for any initial point x0 ∈ (1/2, 1), after ak trials BFGS
guarantees an error less than 2−ak . Thus, the error is reduced to ε > 0 after about
log2(1/ε) trials. By contrast, it is easy to check that steepest descent on f(x) =
|x|, starting with x0 = 2/3, needs k(k + 1)/2 trials to reduce the error to 21−k/3:
consequently, reducing the error to ε requires about (log2(1/ε))2/2 trials.

4. A Conjecture for the Tilted Absolute Value. In the previous section
we saw that BFGS, when applied to the absolute value function, either terminates or
converges to zero with R-linear rate 1/2. We next consider the more general “tilted”
case, where we add a linear function to the absolute value. Numerical experiments
suggest the following behavior.

Conjecture 4.1. Given any u > 0, consider the BFGS iteration for minimizing
the function

x 7→ max{x,−ux} (x ∈ R)

using the inexact line search, with any initial point and any strictly positive initial
Hessian approximation. The method either terminates at zero, or generates a sequence
of interates converging to zero, with R-linear rate r(u) (with respect to the number of
trials) depending only on the parameter u. Furthermore, this rate satisfies

log2 r(u) ∼ − 1
log2 u

as u→ +∞.

12

We discuss this conjecture in some detail. First notice that, as in the case of the
absolute value function, the initial Hessian approximation is relevant only in the first
iteration. Indeed, the iterates xk alternate in sign, because of the Wolfe condition,
and to calculate the next iterate xk+1 using the line search, we try adding to xk the
initial trial step

xk−1 − xk

u + 1
if xk > 0

u(xk−1 − xk)
u + 1

if xk < 0.

Our conjecture of an R-linear convergence rate independent of the initial point is
motivated by the case of the absolute value.

We motivate the conjectured asymptotic behavior of the rate for large values of
the parameter u very loosely as follows. Consider a “typical” nonterminating instance
of the method. Given an iterate xk > 0 for some large iteration count k, the next
iterate xk+1 must lie in the interval (−xk/u, 0). Since u is large, this interval is small
relative to its distance from the iterate xk, so we would expect the line search to require
multiple trials before finding xk+1, thereby “randomizing” its position. (Indeed, an
argument similar to the discussion after Proposition 2.11 suggests that, independent
of the size of the initial trial step, we typically need at least log2 u bisection steps in
the line search.) It therefore seems reasonable to approximate the next iterate xk+1

by a random variable, uniformly distributed on (−xk/u, 0), an assumption supported
by numerical experiments.

As we have observed, the initial trial step at xk+1 is

u(xk − xk+1)
u + 1

.

Throughout what follows, we loosely approximate expressions involving the large pa-
rameter u by the leading term in a power series expansion. In particular, therefore,
we approximate the above step simply by xk. The line search repeatedly bisects this
trial step until it finds an acceptable iterate xk+2. Thus we bisect the step m times,
where m = 0, 1, 2, . . . is minimal such that

xk+2 ≈ xk+1 + 2−mxk < −uxk+1,

or in other words

1
2m

<
−xk+1

xk/(u + 1)
≈ −xk+1

xk/u
.

Thus the line search terminates after m bisections (and hence m + 1 trials), for m =
1, 2, 3, . . ., exactly when the iterate xk+1 lies in an interval approximating

xk

u

(−1
2m−1

,
−1
2m

)
.

This event, which we denote Em, takes place with probability approximately 2−m,
due to the uniform distribution of xk+1, and then

xk+2 ≈
xk

2m
.

13

Again, this approximation is supported by numerical evidence.
Let us now restrict attention to event Em, for some fixed integer m = 1, 2, 3,

Since

xk+2 − xk+1 ≈
xk

2m
,

the initial trial step at xk+2 is approximately

− xk

2m(1 + u)
≈ −xk+2

u
.

The behavior of the algorithm is scale-invariant, in the following sense. Consider
two situations. In the first, the current iterate is x̄, and the initial trail step at that
iteration is z. In the second, the current iterate is γx̄, for some constant γ > 0, and
the initial trail step is γz. Then it is easy to see that the behavior of the algorithm in
the second situation is identical to that in the first, except that every trial is scaled
by γ.

With this observation, we see that the algorithm, starting at the iterate xk+2 and
with initial trial step −xk+2/u, proceeds exactly as it would starting at the point u
(resulting in the acceptable interval (−1, 0)), and with initial trial step approximately
−1, except that all trials are scaled by the factor xk+2/u. The number of trials
necessary will therefore equal the number of trials needed by our standard line search
when seeking a point in the interval (u, u + 1). The discussion after Proposition
2.11 suggests that the line search therefore makes approximately 2 log2 u trials in this
iteration. Notice that this number is independent of m.

To summarize, in the course of a typical pair of iterations of the line search,
event Em occurs with probability 2−m (for m = 1, 2, 3, . . .), and then approximately
m+2 log2 u trials results in a decrease in the value of the function by an approximate
factor 2−m. If the rate of linear convergence per trial, over this pair of iterations, is
the random variable R ∈ [0, 1), then

Rm+2 log2 u ≈ 1
2m

if Em occurs. Hence the expectation of log2 R is given approximately by

E(log2 R) ≈
∞∑

m=1

1
2m

−m

m + 2 log2 u
.

We expect this pattern to repeat in the long term, giving

log2 r(u) = E(log2 R),

Hence, as u→∞, we deduce

(log2 u)(log2 r(u)) ≈ −
∞∑

m=1

1
2m

m log2 u

m + 2 log2 u
→ −

∞∑
m=1

1
2m

m

2
= − 1,

using the fact that each term in the infinite sum is monotonic increasing in u. Hence
we estimate

log2 r(u) ≈ − 1
log2 u

14

Fig. 4.1. BFGS with the inexact line search on the tilted absolute value function f(x) =
max{x,−ux}. Top left: function trials when x0 = 4/7, for u = 1, 2, 4 and 8. Top right: same when
x0 = π/4. Bottom left: plots − log2(1 − r), where r is the average observed convergence rate with
respect to the number of function trials, against log2(u), where u takes values equal to powers of 2.
Bottom right: same as a function of log2(u + 1), where u + 1 takes values equal to powers of 2.

for large u.
Figure 4.1 shows numerical results obtained by applying BFGS with the inexact

line search to f(x) = max{x,−ux}. As in the theoretical analysis, we set the Armijo
parameter c1 = 0; the Wolfe parameter c2 is not relevant for this function. The
top left figure shows the function trials using x0 = 4/7 (to machine precision) for
u = 1, 2, 4 and 8. In the case u = 1 we see the periodic behavior described at the

15

end of Section 3. In the top right, we see no such periodic behavior with the choice
x0 = π/4, but the overall convergence rate remains about the same. The bottom
left plot shows − log2(1 − r) as a function of u = 2j , j = 0, . . . , 15, where r is an
observed convergence rate with respect to all function trials. Each dot in the plot
represents a convergence rate computed by a least squares fit for a different random
starting point. The least squares fits were made to the pairs (νk, fk), where fk is the
function value f(xk) at the end of the kth line search and νk is the cumulative number
of function trials up to that point. Thus, each least squares fit takes account of the
number of function trials in the line searches but not the function trial values. Each
least squares fit uses 40% of the iterates, excluding the first half to avoid the transient
initial behavior, and excluding the final 10% to avoid contamination from rounding
errors. The asterisks show the mean of 100 such observations for each value of u. The
circles plot − log2(1 − r̂) where r̂ is the conjectured approximate convergence rate
2−1/ log(u). The data roughly support the conjecture.

A startling observation results from comparing the plot on the lower left to the one
on the lower right, which is generated in the same way except that the experiments
were made for u = 2j − 1, j = 0, . . . , 15. The convergence rates are noticeably
different! We spent some time searching for an explanation until we realized that this
discrepancy reflects the special roles of powers of two in the line search. We might
think of the results in the lower left as being better than we could expect because the
values of u happen to be powers of two.

5. Experimental Results. We have found that the BFGS algorithm converges
consistently at a linear rate on many different kinds of examples. The ones that we
present here are chosen to gradually increase in complexity in order to illustrate a
number of interesting points. We first make some comments on practical aspects of
the algorithm and then introduce some theoretical concepts that we will need.

5.1. Practical Aspects of the BFGS Algorithm. All the examples that
we present below use the line search presented in Algorithm 2.6, with the Armijo
and Wolfe conditions (2.2) and (2.3) modified as follows. For the Armijo condition,
we set c1 = 0 (any reduction in f is acceptable). For theoretical reasons at least
in the smooth case, one normally uses a positive value for the Armijo parameter,
but we have never encountered difficulties due to setting c1 = 0. For the Wolfe
condition, we make no attempt to check the “differentiable” property. In the unlikely
event that f is evaluated at a point where it is not differentiable, any “tie-breaking”
rule is considered acceptable for the computed gradient; this generally produces a
subgradient. In contrast with the situation for the Armijo parameter, it is important
from a practical point of view to set the Wolfe parameter c2 to a value in (0, 1).
Setting c2 = 1 invites disaster in the BFGS update, since division by zero can occur.
Setting c2 = 0 is not as bad, but this choice can destroy superlinear convergence when
f is smooth as steps of size 1 may never be allowed, and it can cause difficulties in
the nonsmooth case too. We therefore set c2 = 1/2 for all our experiments.

For the tests on functions for which the optimal value fopt is known (in most cases
0 but in some cases 1) we terminate BFGS when f is reduced below fopt + 10−15.
In all cases, we terminate the method when it breaks down: by this we mean that
either gT Hg ≤ 0, where g is the final gradient produced by a successful line search
and H is the updated Hessian, or the line search fails to satisfy the Armijo and Wolfe
conditions: this is deemed to occur if a (large) limit on the number of doubling or
bisection steps is exceeded. Normally, breakdown occurs because of rounding errors,
although in principle it could also occur if a point where f is not differentiable is

16

reached. In all tests, x and H were initialized randomly except if explicitly noted
otherwise. For this section only, we reserve subscripts for components of the vector
x ∈ Rn. The plots that follow require viewing in color to be fully appreciated. All
experiments were conducted in Matlab, which uses IEEE double precision (about
16 decimal digits).

5.2. Theoretical Nomenclature. Although we will not present any theoretical
results in this section, we will need to refer to several standard concepts in nonsmooth
analysis. We use ∂f(x) to denote the Clarke subdifferential (generalized gradient)
[Cla83, RW98] of f at x, which for locally Lipschitz f is simply the convex hull of the
limits of gradients of f evaluated at sequences converging to x. A key property, gen-
eralizing both convexity and continuous differentiability, is regularity [Cla83, RW98]:
a locally Lipschitz, directionally differentiable function f is Clarke regular at a point
when its directional derivative x 7→ f ′(x; d) is upper semicontinuous there for every
fixed direction d. A consequence of regularity of a function f at a point x is that
the Clarke stationarity condition 0 ∈ ∂f(x) is equivalent to the first-order optimality
condition f ′(x, d) ≥ 0 for all directions d. Another key property is partial smoothness
[Lew03]. A regular function f is partly smooth at x relative to a manifold M con-
taining x if (1) its restriction toM is twice continuously differentiable near x, (2) its
subdifferential ∂f is continuous onM near x, and (3) par ∂f(x), the subspace parallel
to the affine hull of the subdifferential of f at x, is exactly the subspace normal toM
at x. For convenience we refer to par ∂f(x) as the V-space for f at x (with respect
to M), and to its orthogonal complement, the subspace tangent to M at x, as the
U-space for f at x. When we refer to the V-space and U-space without reference
to a point x, we mean at a minimizer. For nonzero y in the V-space, the mapping
t 7→ f(x + ty) is necessarily nonsmooth at t = 0, while for nonzero y in the U-space,
t 7→ f(x + ty) is differentiable at t = 0 as long as f is locally Lipschitz.

For example, the norm function is partly smooth at 0 with respect to the trivial
manifold {0}, the V-space at 0 is Rn, and the U-space is {0}. When f is convex, the
partly smooth nomenclature is consistent with the usage of V-space and U-space in
[LOS00]. Most of the functions that we have encountered in applications are partly
smooth at local optimizers with respect to some manifold, but many of them are not
convex.

5.3. Polyhedral Functions. It is shown in [LO08] that the BFGS algorithm
with an exact line search may fail on a polyhedral function. However, we have never
observed BFGS with the inexact line search to fail in this manner when applied to
polyhedral functions, including the counterexample given in [LO08] (which is un-
bounded below). For polyhedral functions that are bounded below, BFGS with the
inexact line search typically exhibits linear, although often slow, convergence of the
function values to the optimal value. We omit details, as other examples are more
interesting.

5.4. The Tilted Norm Function. Consider the Euclidean norm function on
Rn tilted by a linear term:

f(x) = w‖x‖+ (w − 1)eT
1 x

where e1 is the first coordinate vector and w ≥ 1. The only minimizer is the origin,
the V-space is Rn and the U-space is {0}. The case n = 1 is a variant of the tilted
absolute value function discussed in Section 4.

17

Fig. 5.1. BFGS with the inexact line search on f(x) = w‖x‖ + (w − 1)eT
1 x for varying n.

Top left: typical runs for n = 1, 2, 4, 8 and w = 1 showing all function trial values. Top right: plots
− log2(1−r), where r is the average observed convergence rate with respect to the number of function
trials, against log2(n). Bottom left and right: same for w = 8.

Figure 5.1 shows the behavior of BFGS with the inexact line search when w is
fixed and n is varied. The top two panels show results for the untilted norm (w = 1).
The top left panel shows all function values computed by the algorithm, including
trial values in the line search, for typical runs for n = 1, 2, 4 and 8. The sequences of
function trial values appear to be R-linear: in terms of a semi-log plot such as this,
the convergence of a sequence is R-linear with rate r̃ if log10 r̃ is the infimum of the
slopes of all lines that bound the points from above. However, our real interest is in

18

the rate of convergence of those function values that are accepted by the line search,
taking into account nonetheless the number of function evaluations required by the
line search: this rate is r if log10 r is the infimum of the slopes of all lines bounding
the points corresponding to accepted function values from above. We see from the
figure that, for these sequences, the rates r̃ and r are approximately equal. For this
reason we choose to estimate the convergence rate of the function trial values as we
explained in Section 4, using a least squares fit to the pairs (νk, fk), where fk is the
function value at the end of the kth line search and νk is the cumulative number of
function trials up to that point.

The top right panel of Figure 5.1 shows the estimated linear convergence rates
r computed in this way, averaged over 10 runs. As in the previous section, we plot
− log2(1−r) against log2(n). The observed convergence rates are amazingly consistent
and we see that r is well described by 1− 1/(2n). It is interesting to compare this to
the convergence rate with respect to the number of exact line searches for the same
problem, which was observed in [LO08] to be somewhat greater than 1−1/

√
2n. The

discrepancy between these rates is due to the fact that the average number of function
trials needed in an inexact line search grows with n, as can be seen in the top left
panel of Figure 5.1.

The bottom left and right panels of Figure 5.1 show the same information for
w = 8. We observe that, as we saw in Section 4 for n = 1, the larger value of w causes
deterioration in the rate of convergence for small n, but this deterioration vanishes
rapidly as n grows. This observation is confirmed by other experiments that are not
shown here.

We also carried out a number of experiments minimizing f(Ax) where A is a non-
singular matrix. Remarkably, we found that the results were essentially independent
of A, for fixed n. One might suspect that this property extends to any positively
homogenous function, but experiments with polyhedral examples indicate that this is
not the case.

5.5. A Convex Partly Smooth Function. Consider the function

f(x) =
√

xT Ax + xT Bx.

where A and B are positive semidefinite and at least one of them is positive definite,
so the origin is the unique minimizer. If we take A = I and B = 0, f reduces to ‖x‖.
Now let A = diag(1, 0, 1, 0, . . .) and choose B to be positive definite. Then f is partly
smooth at 0 with respect to the manifold

M = {x : x2j−1 = 0, j = 1, . . . ,
n

2
}.

This manifold is linear, so the U-space is M and the V-space is M⊥.
Figure 5.2 shows the behavior of BFGS when B = I, the identity matrix. As pre-

viously, x and H were initialized randomly. In the top left panel, we see convergence
of the function trial values to zero for typical runs for n = 2, 4, 8. At the top right,
we see the convergence of the iterate components xj , j = 1, . . . , n, for the case n = 8.
Note that the odd components converge to zero in advance of the even components,
reflecting the property that f grows away from the origin with the absolute value of
the odd coordinates, as opposed to the square of the even coordinates. In the bottom
left panel, we see that four of the eigenvalues of H converge to zero, and the other
four remain bounded away from zero. The eigenvectors of the final H corresponding
to the tiny eigenvalues span the V-space M⊥ and the eigenvectors corresponding to

19

Fig. 5.2. BFGS with the inexact line search on f(x) =
√

xT Ax + xT Bx, with A =
diag(1, 0, 1, 0, . . .) and B = I. Top left: typical runs for n = 1, 2, 4, 8, showing all function trial
values. Top right: |xj |, j = 1, . . . , n, after each line search, for n = 8. Bottom left: eigenvalues of
H after each line search, for the same run with n = 8. Bottom right: plots − log2(1− r), where r is
the average observed convergence rate with respect to the number of function trials, against log2(n).

the eigenvalues bounded away from zero span the U-space M (up to rounding error,
not shown in the figures). The bottom right panel shows how the convergence rate
with respect to the number of function trials varies with n. This time we see that
the rate r is approximately 1 − 1/n. This is consistent with the result for the norm
function in the sense that in both cases, the rate is approximately 1 − 1/(2d) where
d is the dimension of the V-space.

20

Fig. 5.3. Same as Figure 5.2, except that B = diag(1, . . . , 1/n2).

Figure 5.3 shows the same information for the case B = diag(1, . . . , 1/n2). The
top right panel shows, as previously, that the odd components xj converge to zero
in advance of the even components, but this time the even components lag further
behind. We explain this as follows: the initial changes in H reflect the more important
odd components, but once these are resolved it still takes some time to resolve the even
components, as B is no longer the identity. Likewise, in the bottom left we see that
it takes some time to resolve the different magnitudes of the eigenvalues of H that
are bounded away from zero. Qualitatively similar figures are obtained repeatedly
for runs with different random initializations. The convergence rates observed in the

21

Fig. 5.4. BFGS with the inexact line search on f(x) = (ε + (xT Ax)1/2 + xT Bx)1/2, with
A = diag(1, 0, 1, 0, . . .) and B = diag(1, . . . , 1/n2). Left: typical runs for n = 4 with ε = 10k,
k = −15,−12, . . . , 0, showing all function trial values. Top right: same for n = 8.

bottom right panel are not as consistent as they are for B = I, perhaps because of
rounding errors.

5.6. A Nonconvex Partly Smooth Function. Consider the function

f(x) =
√

ε +
√

xT Ax + xT Bx

where A = diag(1, 0, 1, 0, . . .), B = diag(1, . . . , 1/n2) and ε > 0. This function is
nonconvex for ε < 1, and its Lipschitz constant is O(ε−1/2) as ε ↓ 0. It is partly
smooth with respect to the same manifold as in the previous example.

Figure 5.4 shows the behavior of BFGS with the inexact line search on this ex-
ample for varying ε, with n = 4 on the left and n = 8 on the right. Remarkably,
the convergence rates appear to be independent of ε, though for smaller values of ε,
rounding errors limit the achievable accuracy. The value ε = 10−15 is near the ma-
chine precision and hence the function is effectively non-Lipschitz; nonetheless, BFGS
is able to reduce f to about 10−5.

5.7. A Nonsmooth Rosenbrock Function. Consider the following nonsmooth
variant of the well known Rosenbrock function in two variables:

f(x) = w|x2 − x2
1|+ (1− x2)2,

which is partly smooth with respect to the manifoldM = {x|x2 = x2
1}. This manifold

is not linear, as was the case in the previous example. The iterates rapidly approach
M and then, much more slowly, “track” M, that is they follow a path close to but
not onM, converging to the minimizer [1, 1]T . This is clearly seen in the contour plot
for w = 8 at the top left of Figure 5.5. The different colored points and line segments
indicate the path taken from 7 randomly generated initial points to the minimizer,

22

Fig. 5.5. BFGS with the inexact line search on the nonsmooth Rosenbrock function f(x) =
w|x2−x2

1|+(1−x2)2. Top left: contour plot for w = 8, showing the iterates generated (colored points
connected by line segments) for 7 different starting points. Top right: typical runs for w = 1, 2, 4
and 8 showing all function values. Bottom left: nonsmooth and smooth components of f after each
line search. Bottom right: plots − log2(1− r), where r is the average observed convergence rate with
respect to the number of function trials, against log2(w).

with H initialized to the identity matrix so that the first step is in the direction of
steepest descent. Note that the colors plotted later (black being the latest) overwrite
previously plotted points. At the top right, we see linear convergence with respect to
the number of function trials for typical runs with w = 1, 2, 4 and 8. At the bottom
left, we see the evolution of the smooth and nonsmooth components of f after each

23

line search for w = 8. At the bottom right, observed convergence rates are shown as a
function of w. We see that the rate is approximately 1−1/(2w) for large w, and close
to 1/2 for small positive w. When w = 0, the convergence is superlinear, but this is
not the case for any positive value. Of course, if w is sufficiently small, superlinear
convergence is apparently observed due to limits of machine precision.

5.8. Nesterov’s Chebyshev-Rosenbrock Functions. Nesterov recently in-
troduced the following smooth function:

f̃(x) =
1
4
(x1 − 1)2 +

n−1∑
i=1

(xi+1 − 2x2
i + 1)2.

A nonsmooth variation is

f̂(x) =
1
4
(x1 − 1)2 +

n−1∑
i=1

|xi+1 − 2x2
i + 1|.

In both cases the only minimizer is x̄ = [1, 1, 1, . . . , 1]T . Consider the point x̂ =
[−1, 1, 1, . . . , 1]T and the manifold

M = {x : xi+1 = 2x2
i − 1, i = 1, . . . , n− 1}

which contains both x̄ and x̂. For x ∈M,

xi+1 = 2x2
i − 1 = T2(xi) = T2i(x1) = cos(2i cos−1(x1)), i = 1, . . . , n− 1,

where Ti(x) denotes the ith Chebyshev polynomial.
The functions f̃ and f̂ are both sums of a quadratic term and a nonnegative

sum whose zero set is the manifold M. Minimizing either function is equivalent to
minimizing the first quadratic term on M. Typically, BFGS generates iterates that,
as in the Rosenbrock example, approach M relatively rapidly and then track M to
approximate the minimizer. The iterates do not track M exactly, even if they are
initialized at x̂, but because they typically follow the highly oscillatory manifold M
fairly closely, particularly in the nonsmooth case, this tracking process requires many
iterations. To move from x̂ to x̄ alongM exactly would require xn to trace the graph
of the 2n−1th Chebyshev polynomial, which has 2n−1 − 1 extrema in (−1, 1), as x1

increases from −1 to 1.
Indeed, for n = 8, initializing x to x̂ and H to the identity matrix, BFGS with

the inexact line search requires about 6700 iterations to reduce the smooth function
f̃ below 10−15, and for n = 10, nearly 50,000 iterations are needed.

Minimizing the nonsmooth function f̂ is, not surprisingly, much more difficult.
This function is partly smooth with respect to M at all points in M. The codimen-
sion of M is n − 1, so the dimension of the U and V-spaces at x̄ are 1 and n − 1
respectively. To run BFGS on f̂ , we cannot use x̂ for the initial point as the method
immediately breaks down, f̂ being nondifferentiable at x̂. Instead, we initialize x ran-
domly, retaining the identity matrix for initializing H. We find that we can usually
solve the problem reasonably accurately (reducing f to about 10−8 before breakdown
occurs) when n = 3, but not when n = 4, for which the method typically breaks down
far from x̄. We conjecture that the reason for this is rounding error, not a failure of
the method to converge in theory. The final iterate x is very close toM, and the final
matrix H has n − 1 tiny eigenvalues as expected, but the method is unable to track
M to minimize f̂ .

24

Fig. 5.6. Top left: contour plot for Nesterov’s second nonsmooth Chebyshev-Rosenbrock func-
tion f , with n = 2. Colored points connected by line segments show the iterates generated by BFGS
for 7 different starting points. The Clarke stationary points at [0,−1]T and [1, 1] are both attractors
for the iteration, but only the latter is a minimizer. Top right: sorted final values of f for 1000
randomly generated starting points, n = 4. Bottom left and right: same for n = 5 and n = 6
respectively.

Now consider a second nonsmooth variant, also suggested by Nesterov:

f(x) =
1
4
|x1 − 1|+

n−1∑
i=1

|xi+1 − 2|xi|+ 1|.

25

Again, the only minimizer is x̄. Consider the set

S = {x : xi+1 = 2|xi| − 1, i = 1, . . . , n− 1}.

Minimizing f is equivalent to minimizing its first term on S, and BFGS typically
generates iterates that rapidly approach S and then need to track S to approximate
x̄. Like M, the set S is highly oscillatory, but it has “corners”: it is not a manifold
around any point x where any of the components x1, . . . , xn−1 vanishes. For example,
consider the case n = 2, for which a contour plot is shown at the top left of Figure 5.6.
It is easy to verify that the point [0,−1]T is Clarke stationary (zero is in the convex
hull of gradient limits at the point), but not a local minimizer ([1, 2]T is a direction
of linear descent from [0,−1]T). Thus, f is not regular at [0,−1]T . The contour plot
shows the path of the iterates generated by BFGS using 7 random starting points,
plotted in 7 different colors (as previously, the points plotted later overwrite many of
those plotted earlier near the attractors). Most of the runs converge to the minimizer
[1, 1]T , but some converge to the Clarke stationary point [0,−1]T .

It is not hard to see that, in general, there are 2n−1 − 1 points in S where xj

vanishes for some j < n. For n ≤ 6, given enough randomly generated starting
points, BFGS finds all these points, in addition to the minimizer. The top right,
bottom left and bottom right panels plot final values of f found by 1000 runs of
BFGS starting with random x and H = I, sorted into increasing order, for the cases
n = 4, 5 and 6 respectively. Most runs find either the minimizer or one of the 2n−1−1
nonminimizing points described above, although a few runs break down earlier. For
n = 7, the method usually breaks down far away from these points, again presumably
because of the limitations of machine precision. It seems likely that each of these
2n−1 − 1 points is Clarke stationary and not Clarke regular, although we have not
verified this algebraically.

Our work on this problem is in response to suggestions from both Y. Nesterov
and K. Kiwiel. The latter informed us that this example is the only one he knows
for which his bundle code converges to nonminimizing Clarke stationary points, thus
raising our interest in this issue.

5.9. An Eigenvalue Product Application. All previous examples are con-
trived, chosen to illustrate various points but for which the solution is known. Our
final example is a nonconvex relaxation of an entropy minimization problem arising
in an environmental application [AL04]. Let SN denote the space of real symmetric
N by N matrices. The function f to be minimized is

f(X) = log EK (A ◦X) , (5.1)

where EK(X) denotes the product of the K largest eigenvalues of a matrix X in SN , A
is a fixed matrix in SN , and ◦ denotes the Hadamard (componentwise) matrix product,
subject to the constraints that X is positive semidefinite and has diagonal entries equal
to 1. If the requirement was to minimize the sum of the largest eigenvalues instead of
the product, this would be equivalent to a semidefinite program, but the product of the
largest K eigenvalues is not convex. This problem was one of the examples in [BLO05];
in the results reported there, the objective function was defined without the logarithm
and we enforced the semidefinite constraint by an exact penalty function. It turns
out to be much more favorable for the convergence of BFGS to impose the constraint
by the substitution X = V V T , where V is square. The constraint on the diagonal of
X then translates to a requirement that the rows of V have norm one, a constraint

26

Fig. 5.7. . Results for minimizing the eigenvalue product, N = 20, n = 400. Top left: the
function values after each line search for 10 randomly generated starting points, shifted by fopt, the
minimal value found. Top right: eigenvalues of A ◦ X after each line search for one run. Bottom
left: eigenvalues of H for same run: 44 of these converge to zero. Bottom right: plots f −fopt along
a line xopt + tw, where xopt is the computed minimizer and w is the eigenvector of H associated
with its jth smallest eigenvalue, for j = 10, 20, . . . , 60. The function f is “V-shaped” along the
eigenvectors associated with tiny eigenvalues of H, and “U-shaped” along the others.

that can be easily removed from the problem, redefining f appropriately. Thus, the
problem is converted to the unconstrained minimization of a nonsmooth function f
over Rn with n = N2 (the variable being x = vec(V), the vector representation of
the matrix V). In principle, one might expect multiple local minimizers with different
minimal values, but at least with the data we have been using, this situation seems to

27

occur relatively rarely, although occasionally runs from different starting points find
two different minimal values. (Multiple local minimizers with the same minimal value
frequently arise because of the redundant variables in the parametrization.)

Let λi(Y) denote the ith largest eigenvalue of Y ∈ SN and, for given Y , define
an active set I(Y) = {i : λi(Y) = λK(Y)}. Then EK is partly smooth at Y with
respect to the manifold M̃(Y) = {Z ∈ SN : λi(Z) = λK(Z), ∀i ∈ I(Y)}. It is known
from matrix theory that the codimension of M̃(Y) is m(m + 1)/2− 1, where m is the
multiplicity |I(Y)| [Lax97, p.141]. Now consider the manifold in Rn defined by

M(x̄) =
{

x : A ◦ vec(x)vec(x)T ∈ M̃
(
A ◦ vec(x̄)vec(x̄)T

)}
,

where x̄ is a minimizer of f . To conclude that f is partly smooth with respect to
M at x̄, and that the codimension of M is m(m + 1)/2− 1, where m = |I(A ◦
vec(x̄)vec(x̄)T)|, requires a transversality condition [Lew03]; let us assume that this
holds. For the results reported below, A is set to the leading N ×N submatrix of a
63× 63 covariance matrix [AL04], scaled so that the largest entry is 1.

Figure 5.7 shows the results for N = 20. At the top left, the values of f after
each line search are plotted, shifted by fopt, an estimate of the optimal value, for 10
different randomly generated starting points. Since the exact optimal value is not
known, we set fopt to the best value found in these 10 runs; the apparent superlinear
convergence of f to the optimal value in this run is an artifact of this choice. We see
that all starting points lead to nearly the same final value of f with the same rate of
convergence. At the top right, we see the eigenvalues of A ◦ X as a function of the
iteration count. Observe that after just a few iterations, λ6(A◦X), . . . , λ14(A◦X) have
coalesced together to plotting accuracy (λ15, λ16 and λ17 are slightly smaller). This
computed multiplicity–9 eigenvalue suggests that the manifoldM(x̄) has codimension
9(10)/2 − 1 = 44; if so, this is the dimension of the V-space at x̄. Indeed, this
is confirmed by the bottom left plot: exactly 44 eigenvalues of the inverse Hessian
approximation matrix H converge to zero! Furthermore, at the bottom right we
see the function f − fopt plotted along lines through the computed minimizer xopt

parallel to the eigenvectors corresponding to the jth smallest eigenvalue of H, for
j = 10, 20, . . . , 60. We see that f is V-shaped in the first four of these directions and
U-shaped in the last two, again consistent with our conclusion that the V-space has
dimension 44. This is compelling evidence that BFGS automatically identifies the V
and U-spaces at the minimizer.

As for the nonsmooth Rosenbrock example and the first nonsmooth Nesterov
function f̂ , the manifold M(x̄) is nonlinear. Thus, one expects rapid convergence
nearly to the manifold and much slower convergence tracking the manifold to the
minimizer. Indeed, all 10 runs produce an eigenvalue of A ◦X with multiplicity 9 to
about 14 digits, about as many as one could expect given the precision being used, but
the numerical value of this eigenvalue found by the 10 runs is consistent to only about
8 digits (0.50662367), indicating that although all runs find the optimal manifold to
high precision, their approximation to the solution x̄ has lower precision. If we were
to modify the algorithm to impose x ∈M as a constraint, we would surely be able to
find x̄ to higher precision. We could indeed take this approach for this problem since
we know the equation definingM given the observed multiplicity. What is remarkable
is that BFGS finds such a good approximation to x̄ without any modifications of this
sort.

Our work on this problem is due to suggestions from K. Anstreicher and J. Lee.
It was on this example that we first observed the surprisingly consistent behavior of

28

BFGS on nonsmooth problems.

6. Alternative Methods and Software. The purpose of this paper is to ex-
plore the behavior of BFGS on nonsmooth functions, not to benchmark it against
other methods. Nonetheless, we make some brief comments in this direction. We
start by noting that huge nonsmooth convex problems are routinely solved in many
applications by a variety of methods, notably bundle and interior point methods.
While it is possible that a limited memory variant of BFGS might have a useful role
to play in the nonsmooth convex case, this has not been systematically investigated.
We are therefore concerned here only with algorithms applicable to small to medium-
sized, nonsmooth, nonconvex problems.

6.1. Shor’s R-Algorithm. Because of its simplicity, the easiest method to com-
pare with BFGS is the Shor R-algorithm [Sho85]. Like BFGS, this can be viewed as a
variable metric method, but one that does not satisfy the secant equation. In [BLO08],
we presented the first proof that this algorithm is linearly convergent on some prob-
lems; however, the proof is limited to quadratics (using an exact line search) when
n = 2. In contrast with the method of steepest descent, the rate of convergence is
apparently independent of the conditioning of the quadratic. Not including the cost
of function and gradient evaluations, the overhead per iteration is the same as BFGS:
O(n2), for matrix-vector products.

We carried out experiments with the Shor R-algorithm using the same inexact
line search that has already been described. We found that it works poorly compared
to BFGS. One difficulty is that the algorithm requires the choice of a rather arbitrary
parameter β [Sho85], equivalently 1− γ [BLO08], in (0, 1); convergence is slow if β is
close to 0 or 1 and it is not clear how to best choose its value. A second difficulty is
that if the Wolfe parameter c2 is set to a positive number, as we argued is favorable
for BFGS, the Shor algorithm often fails to converge even on simple examples. This
is well known, as is the remedy: set c2 = 0 to ensure that the directional derivative
always changes sign in the line search, a property that BFGS does not require. Even
using, say, β = 1/2 and c2 = 0, the Shor algorithm often requires significantly more
function trials in the line search compared to BFGS. For the Shor algorithm, the unit
step is often not well scaled, as even the example f(x) = |x| shows, but no other
choice is obviously better.

Figure 6.1 shows results for the Shor R-algorithm, with β = 1/2 and c2 = 0. In
the top left and bottom left panels we show results for the tilted norm function of
Section 5.4, with A = I, and w set to 1 and 8 respectively. These may be compared
to the results for the same problem using BFGS shown in the top left and bottom
left panels of Figure 5.1. In several cases the number of line search trials made by
the Shor method increases steadily with the iteration number k. In such a case the
convergence rate for all function trial values is not the same as the convergence rate
(still with respect to all function trials) for those function values that are accepted by
the line search.

The top right panel of the same figure shows results for the convex partly smooth
problem of Section 5.5, while the bottom right shows results for the nonsmooth Rosen-
brock problem of Section 5.7. On these problems, the Shor algorithm does not take
an excessive number of steps in the line search, but the convergence is slower than
BFGS nonetheless, and does not appear to be R-linear, especially for the Rosenbrock
problem. Compare with the results for BFGS in the top left panel of Figure 5.3 and
the top right panel of Figure 5.5 respectively.

29

Fig. 6.1. Results using the Shor R-Algorithm instead of BFGS, with c2 = 0 in the inexact line
search. Top and bottom left: same problem as in Figure 5.1, top and bottom left. Top right: same
problem as in Figure 5.3, top left. Bottom right: same problem as in Figure 5.5, top right.

We also experimented with a version of the Shor algorithm where we initialized
the line search by scaling the search direction by the step taken the previous iteration.
This seems to improve the method, but not a great deal.

We emphasize that these results are for the basic version of the Shor R-algorithm
as defined in [Sho85, BLO08]. It may be that some of the ideas developed, for example,
in [KK00] would result in improved performance.

30

6.2. Gradient Sampling. The gradient sampling algorithm enjoys fairly strong
convergence results for locally Lipschitz functions [BLO05, Kiw07], although no rate of
convergence has been established. Unfortunately, it becomes increasingly impractical
as n grows, both because of its computational requirements (multiple gradient eval-
uations and the overhead of solving a convex quadratic program) and for theoretical
reasons [Sha05].

In practice we find that BFGS is generally superior, particularly as n increases,
although for difficult functions with large Lipschitz constants or that are non-Lipschitz
or even discontinuous, as can often happen in applications, gradient sampling seems
to have an advantage in robustness.

6.3. Bundle Methods. In Section 1, several references were given to bundle
methods, especially those that incorporate variable metric updates. In the nonconvex
case these methods are not easy to implement so we do not attempt to make com-
parisons here. The overhead in most bundle methods is the cost of solving a convex
quadratic program, but as noted in Section 1, methods with lower overhead have been
developed during the last decade; Haarala [Haa04] gives a good overview. We specu-
late that on medium-sized partly smooth problems with relatively small-dimensional
V-spaces, there may be little to be gained by using the more complex bundle-variable-
metric methods in preference to standard BFGS. At the opposite extreme, BFGS
converges very slowly on large polyhedral functions while bundle methods terminate
finitely. Thus, it does seem compelling that a method for general large-scale use
should incorporate key ingredients of bundle methods.

6.4. HANSO. In Section 1, the quote from Lemaréchal alluded to the difficulty
of assessing the result provided by BFGS. Our approach is simple: we run the method
until it breaks down because of rounding errors, or until a preset iteration or time
limit is exceeded, and view the resulting point as a candidate for a local minimizer.
If the number of variables is not too large, one can then run a local bundle iteration
to try to verify local optimality. If this fails, another possibility is to initiate gradient
sampling, which, like ordinary bundle methods, returns information that can be used
to assess how well the final point may approximate a local minimizer. Our freely
available Matlab code hanso (Hybrid Algorithm for Non-Smooth Optimization)2 is
based on these ideas. hanso is used by our code hifoo (H-Infinity Fixed-Order Opti-
mization)3 [BHLO06] to design low-order controllers for linear dynamical systems, an
important source of small-dimensional but difficult nonsmooth, nonconvex optimiza-
tion problems. The BFGS code in hanso has been used to solve other nonsmooth
optimization problems as well, including the “condition geodesic” problem [BD08].

7. A Conjecture. This paper raises far more questions than it answers. We
hope that we have made a convincing case that BFGS is a practical and effective
method for nonsmooth optimization, and we have tried to give insight into why it
works as well as it does.

In practice, for functions with bounded level sets, when initialized randomly,
BFGS always seems to generate function values converging linearly to a Clarke sta-
tionary value. We speculate that, for some broad class of reasonably well-behaved
functions, this behavior is almost sure. In framing a conjecture, let us first rule out
the worst kinds of pathology by considering objective functions whose graphs strat-
ify into analytic manifolds. (A variety of dynamical systems associated with such

2http://www.cs.nyu.edu/overton/software/hanso/
3http://www.cs.nyu.edu/overton/software/hifoo/

31

functions are known to behave well.) To be concrete, we consider the class of semi-
algebraic functions, which includes all the examples given in this paper. Now let us
consider appropriately random initial data: the precise distributions are irrelevant,
providing they are absolutely continuous with respect to Lebesgue measure. Again to
be concrete, let us assume a normally distributed intial point and an initial positive
definite inverse Hessian approximation sampled from a Wishart distribution (that is,
H = XXT where X is square with normally distributed entries.) In fact, this is how
x and H were initialized in the experiments reported above. We now consider the
BFGS method, in exact arithmetic, using the inexact line search defined in Section
2, for any fixed Armijo and Wolfe parameters satisfying 0 < c1 < c2 < 1. Let us
adopt the convention that if the algorithm generates a trial point at which f is not
differentiable, then it terminates.

Conjecture 7.1. Consider any locally Lipschitz, semi-algebraic function f , and
choose x0 and H0 randomly. With probability one, the BFGS method generates an
infinite sequence of iterates. Furthermore, any cluster point x̄ of this sequence is
Clarke stationary, that is 0 ∈ ∂f(x̄), and the sequence of all function trial values
converges to f(x̄) R-linearly.

Acknowledgment. Mille grazie a F. Facchinei e agli altri membri del Dipar-
timento di Informatica e Sistemistica dell’ Università di Roma “La Sapienza”, dove
gran parte di questo lavoro è stato eseguito, per avermi fornito un ambiente piacevole
e stimolante.

Appendix A. Alternating Series Representation. Section 3 studies the
behavior of the BFGS algorithm applied to the absolute value function, using the line
search described in Section 2. This behavior turns out to depend on how the initial
point can be represented as the sum of an alternating series of decreasing powers of
two. We discuss this representation here, starting with a simple tool.

Lemma A.1. If

y =
m∑

k=0

(−1)k2−bk ,

for some m = 2, 3, 4, . . . or ∞ and some strictly increasing sequence of integers (bj),
then

2−b0−1 < y < 2−b0 .

Proof First notice that since y is the sum of an alternating series of strictly decreasing
positive terms, we have

2−b0 − 2−b1 < y < 2−b0 .

But b1 ≥ b0 + 1, so

2−b0 − 2−b1 ≥ 2−b0 − 2−b0−1 = 2−b0−1,

whence the result. 2

The following routine result describes the representation we use.
Theorem A.2. Any number x ∈ R++ has a unique alternating binary rep-

resentation as the sum of a finite or infinite alternating series of strictly decreasing
32

powers of two: that is, there is a unique number m = 0, 1, 2, . . . or ∞ and a unique
sequence of integers a0 < a1 < a2 < · · · (with m + 1 terms if m <∞) such that

x =
m∑

k=0

(−1)k2−ak . (1.3)

Proof Consider the following iterative procedure.
Algorithm A.4 (alternating binary representation).

s−1 ← 0
m← +∞
k ← 0
repeat

ak ← b− log2[(−1)k(x− sk−1)]c
sk ← sk−1 + (−1)k2−ak

if sk = x, m = k, STOP
k ← k + 1

end(repeat)
We claim first that the algorithm is well-defined: that is, the partial sums

sk =
k∑

j=0

(−1)j2−aj (1.5)

satisfy

(−1)k(x− sk−1) > 0 (1.6)

for all k < m. Notice that the sequence of integers (ak) is uniquely defined by the
inequalities

2−ak−1 < (−1)k(x− sk−1) ≤ 2−ak , for all finite k ≤ m. (1.7)

To prove our claim (1.6), note that the case k = 0 follows immediately from the
inequalities (1.7). On the other hand, if (1.6) holds for some k < m, then inequalities
(1.7) hold, so

(−1)k+1(x− sk) = (−1)k+1(x− [sk−1 + (−1)k2−ak])
= − (−1)k(x− sk−1) + 2−ak ≥ 0,

and in fact the inequality is strict since k 6= m. Our claim (1.6) now follows by
induction.

We turn to proving the monotonicity of the sequence (ak). Assuming k < m, by
applying inequalities (1.7) once as they appear and once with k replaced by k +1, we
deduce

2−ak+1−1 < (−1)k+1(x− sk) = (−1)k(sk − sk−1)− (−1)k(x− sk−1)
< (−1)k(−1)k2−ak − 2−ak−1 = 2−ak−1.

Thus ak+1 > ak, as required. Finally, as a consequence, notice that the inequalities
(1.7) imply sk → x as k →∞ if m =∞, so the representation (1.3) follows.

33

To prove uniqueness of the expression (1.3), suppose

x =
∞∑

k=0

(−1)k2−bk , (1.8)

for some strictly increasing sequence of integers (bj). We then claim bk = ak for all
indices k. (The proof for finite sums is similar.)

First notice that

2−b0−1 < x < 2−b0 ,

using Lemma A.1. Since inequalities (1.7) in the case k = 0 define ak uniquely, we
deduce b0 = a0.

We now proceed by induction. Suppose bj = aj for all j = 0, 1, 2, . . . , k−1. Then
we have

sk−1 =
k−1∑
j=0

(−1)j2−bj

and hence

x− sk−1 =
∞∑

j=k

(−1)j2−bj .

Using Lemma A.1 again now shows

2−bk−1 < (−1)k(x− sk−1) < 2−bk .

Again, since inequalities (1.7) define ak uniquely, we deduce bk = ak. 2

REFERENCES

[AL04] K. Anstreicher and J. Lee. A masked spectral bound for maximum-entropy sampling.
In A. di Bucchianico, H. Läuter, and H. P. Wynn, editors, MODA 7 - Advances in
Model-Oriented Design and Analysis, pages 1–10. Springer, Berlin, 2004.

[BD08] P. Boito and J.-P. Dedieu. The condition metric in the space of rectangular full rank
matrices. 2008. Submitted to SIAM Journal on Matrix Analysis and Applications.

[BGLS95] J. Bonnans, J. Gilbert, C. Lemaréchal, and C. Sagastizábal. A family of variable metric
proximal methods. Mathematical Programming, 68:15–48, 1995.

[BHLO06] J.V. Burke, D. Henrion, A.S. Lewis, and M.L. Overton. HIFOO - a MATLAB package
for fixed-order controller design and H∞ optimization. In Fifth IFAC Symposium
on Robust Control Design, Toulouse, 2006.

[BLO05] J.V. Burke, A.S. Lewis, and M.L. Overton. A robust gradient sampling algorithm for
nonsmooth, nonconvex optimization. SIAM Journal on Optimization, 15:751–779,
2005.

[BLO08] J.V. Burke, A.S. Lewis, and M.L. Overton. The speed of Shor’s R-algorithm. IMA
Journal on Numerical Analysis, 28:711–720, 2008.

[Cla83] F. H. Clarke. Optimization and Nonsmooth Analysis. John Wiley, New York, 1983.
Reprinted by SIAM, Philadelphia, 1990.

[Haa04] M. Haarala. Large-Scale Nonsmooth Optimization: Variable metric bundle method with
limited memory. PhD thesis, University of Jyväskylä, Finland, 2004.

[HUL93] J.B. Hiriart-Urruty and C. Lemaréchal. Convex Analysis and Minimization Algorithms.
Springer-Verlag, New York, 1993. Two volumes.

[Kiw85] K.C. Kiwiel. Methods of Descent for Nondifferentiable Optimization. Lecture Notes in
Mathematics 1133. Springer-Verlag, Berlin and New York, 1985.

[Kiw07] K.C. Kiwiel. Convergence of the gradient sampling algorithm for nonsmooth nonconvex
optimization. SIAM Journal on Optimization, 18:379–388, 2007.

34

[KK00] F. Kappel and A. Kuntsevich. An implementation of Shor’s r-algorithm. Computational
Optimization and Applications, 15:193–205, 2000.

[Lax97] P. D. Lax. Linear Algebra. John Wiley, New York, 1997.
[Lee98] J. Lee. Constrained maximum-entropy sampling. Operations Research, 46:655–664,

1998.
[Lem81] C. Lemaréchal. A view of line searches. In Optimization and optimal control (Proc.

Conf. Math. Res. Inst., Oberwolfach, 1980), pages 59–78, Berlin and New York,
1981. Springer. Lecture Notes in Control and Information Sciences, 30.

[Lem82] C. Lemaréchal. Numerical experiments in nonsmooth optimization. In E.A. Nurmin-
ski, editor, Progress in Nondifferentiable Optimization, pages 61–84, Laxenburg,
Austria, 1982.

[Lew03] A.S. Lewis. Active sets, nonsmoothness and sensitivity. SIAM Journal on Optimization,
13:702–725, 2003.

[LF01] D.-H. Li and M. Fukushima. On the global convergence of the BFGS method for
nonconvex unconstrained optimization problems. SIAM Journal on Optimization,
11:1054–1064, 2001.

[LO08] A.S. Lewis and M.L. Overton. Behavior of BFGS with an exact line search on non-
smooth examples. 2008. Submitted to SIAM Journal on Optimization.

[LOS00] C. Lemaréchal, F. Oustry, and C. Sagastizábal. The U-Lagrangian of a convex function.
Trans. Amer. Math. Soc., 352:711729, 2000.

[LS94] C. Lemaréchal and C. Sagastizábal. An approach to variable metric bundle methods.
In IFIP Proceedings, Systems Modeling and Optimization, 1994.

[LV99] L. Lukšan and J. Vlček. Globally convergent variable metric method for convex nons-
mooth unconstrained minimization. Journal of Optimization Theory and Applica-
tions, 102:593–613, 1999.

[LV01] L. Lukšan and J. Vlček. Variable metric methods for nonsmooth optimization. Technical
Report 837, Academy of Sciences of the Czech Republic, May 2001.

[Mif77] R. Mifflin. An algorithm for constrained optimization with semismooth functions. Math-
ematics of Operations Research, 2:191–207, 1977.

[MSQ98] R. Mifflin, D. Sun, and L. Qi. Quasi-Newton bundle-type methods for nondifferentiable
convex optimization. SIAM Journal on Optimization, (2):583–603, 1998.

[NW06] J. Nocedal and S. Wright. Nonlinear Optimization. Springer, New York, second edition,
2006.

[Pow76] M.J.D. Powell. Some global convergence properties of a variable metric algorithm for
minimization without exact line searches. In Nonlinear Programming, pages 53–72,
Providence, 1976. Amer. Math. Soc. SIAM-AMS Proc., Vol. IX.

[RF00] A.I. Rauf and M. Fukushima. Globally convergent BFGS method for nonsmooth con-
vex optimization. Journal of Optimization Theory and Applications, 104:539–558,
2000.

[Roy63] H.L. Royden. Real Analysis. Macmillan, New York, 1963.
[RW98] R.T. Rockafellar and R.J.B. Wets. Variational Analysis. Springer, New York, 1998.
[Sha05] A. Shapiro. Comments on “generalized derivatives and nonsmooth optimization, a finite

dimensional tour” by j. dutta. Sociedad de Estadustica e Investigacion Operativa,
TOP, 13:302–306, 2005.

[Sho85] N.Z. Shor. Minimization Methods for Non-differentiable Functions. Springer-Verlag,
New York, 1985.

[VL01] J. Vlček and L. Lukšan. Globally convergent variable metric method for nonconvex
nondifferentiable unconstrained minimization. Journal of Optimization Theory and
Applications, 111:407–430, 2001.

[Wol75] P. Wolfe. A method of conjugate subgradients for minimizing nondifferentiable func-
tions. Math. Programming Stud., 3:145–173, 1975. In: Nondifferentiable Optimiza-
tion, M.L. Balinski and P. Wolfe, eds.

[YVGS08] J. Yu, S.V.N. Vishwanathan, S. Günther, and N. Schraudolph. A quasi-Newton ap-
proach to non-smooth convex optimization. In Proceedings of the 25th International
Conference on Machine Learning, 2008.

[ZBN97] C. Zhu, R.H. Byrd, and J. Nocedal. Algorithm 778, L-BFGS-B, FORTRAN routines for
large scale bound constrained optimization. ACM Transactions on Mathematical
Software, 23:550–560, 1997.

[ZZA+00] S. Zhang, X. Zou, J. Ahlquist, I. M. Navon, and J. G. Sela. Use of differentiable
and nondifferentiable optimization algorithms for variational data assimilation with
discontinuous cost functions. Monthly Weather Review, 128:4031–4044, 2000.

35

