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Crouzeix’s conjecture states that for all polynomials p and 
matrices A, the inequality ‖p(A)‖ ≤ 2 ‖p‖W (A) holds, where 
the quantity on the left is the 2-norm of the matrix p(A)
and the norm on the right is the maximum modulus of 
the polynomial p on W (A), the field of values of A. We 
report on some extensive numerical experiments investigating 
the conjecture via nonsmooth minimization of the Crouzeix 
ratio f ≡ ‖p‖W (A)/‖p(A)‖, using Chebfun to evaluate this 
quantity accurately and efficiently and the BFGS method 
to search for its minimal value, which is 0.5 if Crouzeix’s 
conjecture is true. Almost all of our optimization searches 
deliver final polynomial-matrix pairs that are very close to 
nonsmooth stationary points of f with stationary value 0.5 
(for which W (A) is a disk) or smooth stationary points of f
with stationary value 1 (for which W (A) has a corner). Our 
observations have led us to some additional conjectures as 
well as some new theorems. We hope that these give insight 
into Crouzeix’s conjecture, which is strongly supported by our 
results.
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1. Crouzeix’s conjecture

Let Mn denote the space of n × n complex matrices, let Pm denote the space of 
polynomials with complex coefficients and degree ≤ m, and let ‖ · ‖ denote the 2-norm. 
For A ∈ Mn, the field of values (or numerical range) of A is

W (A) = {v∗Av : v ∈ C
n, ‖v‖ = 1} ⊂ C.

The Toeplitz–Hausdorff theorem states that W (A) is convex for all A ∈ Mn [18, Ch 1].
Let p ∈ Pm and let A ∈ Mn. In 2004, M. Crouzeix conjectured [8] that for all m

and n,

‖p(A)‖ ≤ 2 ‖p‖W (A). (1)

The left-hand side is the 2-norm (spectral norm, maximum singular value) of the ma-
trix p(A), while ‖p‖W (A) on the right-hand side is maxζ∈W (A) |p(ζ)|. By the maximum 
modulus theorem, ‖p‖W (A) must be attained on bd W (A), the boundary of W (A).

In 2007, Crouzeix proved [9] that

‖p(A)‖ ≤ 11.08 ‖p‖W (A) (2)

i.e., the conjecture is true if we replace 2 by 11.08. Crouzeix wrote:

The estimate 11.08 is not optimal. There is no doubt that refinements are possible 
which would decrease this bound. We are convinced that our estimate is very pes-
simistic, but to improve it drastically (recall that our conjecture is that 11.08 can be 
replaced by 2), it is clear that we have to find a completely different method.

The example

p(ζ) = ζ − λ, A =
[
λ α

0 λ

]
,

where α, λ ∈ C, α �= 0, shows that 11.08 cannot be replaced by a smaller number than 2. 
In this case, W (A) is the disk of radius |α|/2 centered at λ so ‖p‖W (A) = |α|/2, and 
‖p(A)‖ = |α|.

As the degree of p is unbounded in Crouzeix’s conjecture (1) and theorem (2), they 
can be extended from polynomials to functions analytic in the interior of W (A) and 
continuous on its boundary. This is because W (A) is a compact subset of the complex 
plane such that C\W (A) is connected, and by Mergelyan’s theorem [24,25] any function 
analytic on the interior of such a set and continuous on its boundary can be uniformly 
approximated by polynomials. The conjecture and theorem can also be extended from 
matrix space to infinite-dimensional Hilbert space, where the only difference is that W (A)
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may not be closed, so ‖p‖W (A) is defined as supζ∈W (A) |p(ζ)|. Crouzeix’s conjecture and 
theorem might seem somewhat esoteric, but in our view they are quite fundamental with 
remarkably broad impact: the norm of an analytic function of a matrix A is bounded 
by a modest constant times its norm on the field of values of A. Applications of the 
conjecture include estimating the transient behavior of ‖etA‖ [15] and describing the 
convergence rate of GMRES [4].

The conjecture is known to hold for certain restricted classes of polynomials p ∈ Pm

or matrices A ∈ C
n×n. Let D denote the open unit disk, and let D denote its closure.

• p(ζ) = ζm (from the power inequality [1,27], which states that the numerical radius 
r(Am) is less than or equal to [r(A)]m, and since ‖Am‖ ≤ 2r(Am), it follows that 
‖Am‖ ≤ 2[r(A)]m = 2 maxζ∈W (A) |ζm|)

• W (A) is a disk (Badea [8, p. 462], based on von Neumann’s inequality [29], which 
states that if B is a contraction, i.e., ‖B‖ ≤ 1, then ‖p(B)‖ ≤ supζ∈D |p(ζ)|, and 
work of Okubo and Ando [26], which shows that if r(A) ≤ 1, then A is similar to a 
contraction B via a similarity transformation with condition number at most 2, and 
hence ‖p(A)‖ ≤ 2‖p(B)‖, giving the result when W (A) = D; the extension to any 
disk follows by scaling and translating A)

• n = 2 (Crouzeix [8])
• the minimum polynomial of A has degree 2 (combining the previous result with [28])
• n = 3 and A3 = 0 (Crouzeix [10] argues that the conjecture holds in this case using 

a combination of mathematical and numerical arguments)
• A is an upper Jordan block with a perturbation in the bottom left corner (Greenbaum 

and Choi [14]) or any diagonal scaling of such A (Choi [6])
• A is diagonalizable with an eigenvector matrix having condition number less than or 

equal to 2 (easy)
• AA∗ = A∗A (then the constant 2 can be improved to 1).

In the summer of 2016, César Palencia announced a surprising improvement over (2), 
namely

‖p(A)‖ ≤
(
1 +

√
2
)
‖p‖W (A). (3)

A proof has recently appeared in [12].

2. The boundary of the field of values

It is well known from Kippenhahn [20] and Johnson [19] that bd W (A), the boundary 
of W (A), can be characterized as

bd W (A) = {zθ = v∗θAvθ : θ ∈ [0, 2π)} (4)
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Fig. 1. For A = diag(J, B, D), the extreme points of W (A) lie in the union of five connected sets, including 
the two eigenvalues 5 ± i.

where vθ is a normalized eigenvector corresponding to the largest eigenvalue of the Her-
mitian matrix

Hθ = 1
2
(
eiθA + e−iθA∗) .

The proof uses a supporting hyperplane argument (for a succinct version, see [16]).
As an example, let i denote the imaginary unit and let

J =
[

0 1
0 0

]
, B =

[
1 2
−3 4

]
, D =

[
5 + i 0

0 5 − i

]
, A = diag(J,B,D).

The fields of values of J , B and D are, respectively, the disk of radius 1/2 centered 
at 0, an elliptical disk with major axis joining 2.5 ± 2.5i, and the line segment joining 
5 ± i, and the field of values of A is the convex hull of these three sets. Fig. 1 plots the 
points zθ ∈ bd W (A) (shown as small circles) for some values of θ in [0, 2π]. The extreme 
points of W (A) (those that cannot be expressed as a convex combination of two other 
points in the set) consist of five disjoint separated connected sets, two of which are the 
eigenvalues 5 ± i. The boundary of W (A) also includes five line segments joining these 
sets, because the largest eigenvalue of Hθ has multiplicity two at five critical values of θ, 
and hence the corresponding eigenvector vθ can be taken as any normalized vector in a 
two-dimensional subspace, resulting in multiple values for zθ.

A point z ∈ bd W (A) is called a vertex (or a corner point, or a singular point) if there 
is more than one supporting hyperplane (supporting line) for W (A) passing through z. 
It is known [20, Theorem 13] that vertices of W (A) are always eigenvalues of A, such 
as 5 ± i in Fig. 1. Clearly, bd W (A) is nonsmooth at a vertex. Although the points in 
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the interior of line segments of bd W (A) cannot easily be parametrized by zθ, due to 
its non-unique values, there is a convenient parametrization for these points which is 
based on computing the skew-Hermitian part of eiθA as well as its Hermitian part Hθ. 
Although this is not difficult to derive, it does not seem to be well known; the only 
reference we know is an unpublished paper by Cowen and Harel [5].

3. The Crouzeix ratio and its gradient

Let us identify p ∈ Pm with its coefficient vector c = [c0, c1, . . . , cm]T ∈ C
m+1, and 

define the function q : Cm+1 × C → C by

q(c, ζ) =
m∑
j=0

cjζ
j .

We define the Crouzeix ratio as

f(c, A) = τ(c, A)
β(c, A) (5)

where

τ(c, A) = max
{
|q(c, z)| : z ∈ W (A)

}
,

and

β(c, A) = ‖p(A)‖ = σmax
(
q(c, A)

)
,

the largest singular value of 
∑m

j=0 cjA
j . Thus f maps the Euclidean space Cm+1 ×Mn, 

with real inner product

〈(c, A), (d,B)〉 = Re
(
c∗d + tr(A∗B)

)
, (6)

to R. Here ∗ denotes complex conjugate transpose. The notations τ and β were chosen 
to indicate the “top” and “bottom” components of the ratio. The conjecture (1) states 
that f(c, A) is bounded below by 0.5 independently of the polynomial degree m and the 
matrix order n.

The Crouzeix ratio f is not convex, and it is not defined if the denominator is zero, but 
it is locally Lipschitz on the set of all pairs (c, A) for which q(c, A) �= 0. It is semialgebraic 
(its graph is a finite union of sets, each of which is defined by a finite system of polynomial 
inequalities). It is a nonsmooth function, meaning that it is not differentiable at some 
points, which necessarily form a set of measure zero both because f is locally Lipschitz 
and because it is semialgebraic.

There are three different potential sources of nonsmoothness in the Crouzeix ratio f . 
The first occurs when the numerator τ(c, A) is attained at more than one point z ∈
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bd W (A). The second possibility is that although τ(c, A) is attained only at a single 
point z ∈ bd W (A), the equation z = v∗Av in (4) holds for two or more linearly 
independent unit vectors v. The third possibility is that the maximum singular value 
of q(c, A), which defines the denominator of the Crouzeix ratio, has multiplicity two or 
more.

Theorem 1. Suppose that τ(c, A) is attained at a unique point z ∈ bd W (A), that z =
v∗Av holds only for one unit vector v up to multiplication by a unimodular scalar, and 
that the maximum singular value of q(c, A) is simple, with corresponding left and right 
singular vectors u and w satisfying q(c, A)w = β(c, A)u and u∗q(c, A) = β(c, A)w∗, so 
that none of the three nonsmooth scenarios described above occur. Then the Crouzeix 
ratio f is differentiable at (c, A), and its gradient, w.r.t. the inner product (6), is

∇f(c, A) = β(c, A)∇τ(c, A) − τ(c, A)∇β(c, A)
β(c, A)2 (7)

where ∇τ(c, A) = [∇cτ(c, A); ∇Aτ(c, A)], ∇β(c, A) = [∇cβ(c, A); ∇Aβ(c, A)], with

∇cτ(c, A) = q(c, z)
|q(c, z)| [1, z̄, . . . , z̄m]T ,

∇Aτ(c, A) = q(c, z)
|q(c, z)|

m∑
j=1

jc̄j z̄
j−1vv∗,

∇cβ(c, A) = [w∗u,w∗A∗u, . . . , w∗(A∗)mu]T ,

∇Aβ(c, A) =
m∑
j=1

j−1∑
�=0

c̄j(A∗)�uw∗(A∗)j−�−1.

Proof. This formula is a special case of Theorem 3 in [16], our companion paper with 
A.S. Lewis, which gives a formula for ∂f(c, A), the Clarke subdifferential3 [7] of f at 
(c, A), that applies in both the first and second nonsmooth scenarios discussed above,4
assuming only that the third does not occur. Under the stronger assumptions made here, 
∂f(c, A) consists of only a single point, implying [2, Theorem 6.2.4] that f is differentiable 
at (c, A), and that its gradient is this point, whose formula is given above.5 �
3 The Clarke subdifferential ∂f(c, A) is conv{lim(c(k),A(k))→(c,A) ∇f(c(k), A(k))}, where conv denotes 

convex hull, and the limit is taken over all sequences ((c(k), A(k))) converging to (c, A) on which f is 
differentiable. As a simple example, the subdifferential of the absolute value function at 0 is the interval 
[−1, 1], since its gradient is −1 on the negative numbers and 1 on the positive numbers.
4 In the language of [16], the first case occurs when Z(c, A) contains multiple points, and the second case 

occurs when Z(c, A) is a singleton but Ω(c, A) consists of points (ω, v) where there are at least two linearly 
independent possible choices for v.
5 Theorem 3 of [16] assumes that the matrix has order greater than one and that the polynomial is 

not constant, but if n = 1, then W (A) consists of a single point, f(c, A) = 1 for all (c, A), and it is 
straightforward to verify that (7) holds with ∇f(c, A) = 0, while if n > 1 and c = [c0, 0, . . . , 0], representing 
the constant polynomial q(c, ζ) = c0, then the assumptions of Theorem 1 do not hold, since if A is not a 
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4. Smooth stationary points of the Crouzeix ratio

In our optimization experiments, we frequently encounter pairs (c, A) of the following 
form.

Definition 1. The matrix A has an outside scalar block if A = diag(λ, B), λ ∈ C, λ /∈
W (B). Furthermore, the pair (c, A) has a dominant outside scalar block if it also holds 
that

|q(c, λ)| > |q(c, ν)| for all ν ∈ W (A), ν �= λ,

and

|q(c, λ)| > ‖q(c,B)‖.

If A has an outside scalar block then W (A) = conv(λ, W (B)) with bd W (A) consisting 
only of λ, part of bd W (B) and two line segments connecting λ to W (B), as illustrated 
by the examples reported in Fig. 4 below. Hence, W (A) has a vertex at λ.

Theorem 2. If (c, A) has a dominant outside scalar block then the Crouzeix ratio f is 
differentiable at (c, A), its value f(c, A) = 1 and its gradient ∇f(c, A) = 0.

Proof. It is immediate from the assumption that the maximum in the definition of 
τ(c, A) is attained only at λ, with τ(c, A) = |q(c, λ)|, and that the largest singular value 
of q(c, A) is simple, with β(c, A) = |q(c, λ)|. Hence f(c, A) = τ(c, A)/β(c, A) = 1. Since, 
for all θ ∈ [0, 2π], the matrix Hθ has the same block diagonal structure as A, it follows 
that its normalized eigenvectors have the form either v = νe1, where e1 is the first 
coordinate vector and |ν| = 1, and for which v∗Av = λ, or v = [0; ̃v], for which ‖ṽ‖ = 1
and v∗Av = ṽ∗Bṽ ∈ W (B) /
 λ. Hence, the only unit vector v for which v∗Av = λ is e1, 
up to multiplication by a unimodular scalar. We can also take the right singular vector 
w for the maximum singular value of q(c, A) to be e1, and then the corresponding left 
singular vector is u = μe1 where μ = q(c, λ)/|q(c, λ)|. Since all three assumptions of 
Theorem 1 are satisfied, f is differentiable at (c, A), with gradient given by (7), with

∇cτ(c, A) = μ
[
1, λ̄, . . . , λ̄m

]T
,

∇Aτ(c, A) = μ
m∑
j=1

jc̄j λ̄
j−1e1eT1 ,

∇cβ(c, A) = μ
[
1, λ̄, . . . , λ̄m

]T
,

multiple of the identity matrix the first assumption fails, and if A is a multiple of the identity, the third 
assumption fails.
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∇Aβ(c, A) = μ
m∑
j=1

j−1∑
�=0

c̄j λ̄
�e1eT1 λ̄j−�−1.

It follows that ∇f(c, A) = 0. �
Thus, pairs (c, A) which have a dominant outside scalar block, as well as equivalent 

pairs (c, U∗AU) where U is unitary, are smooth stationary points of the Crouzeix ratio 
f with stationary value 1. Note that although f is smooth at (c, A), the boundary of the 
field of values of A is nonsmooth.

If we consider the matrix diag(λI, B), where I is the identity matrix of order 2 or 
more, instead of diag(λ, B), we no longer find that the unit vector v for which v∗Av = λ

is unique up to a scaling, and hence f is not differentiable. Also, if we consider a matrix 
A = diag(λ, B) with an outside scalar block, where τ(c, A) is attained at a unique point 
in the interior of a line segment in bd W (A) instead of the vertex λ, we find, working 
through the Cowen–Harel parametrization mentioned above, that v is not unique up to 
a scaling, and hence again f is not differentiable at (c, A).

5. Nonsmooth stationary points of the Crouzeix ratio

Pairs (c, A) for which the Crouzeix ratio is 0.5 are known. Given an integer k with 
2 ≤ k ≤ min(n, m +1), define the polynomial p ∈ Pm by p(ζ) = ζk−1, with corresponding 
coefficient vector

c = [c0, c1, . . . , ck−1, . . . , cm] = [0, 0, . . . , 0, 1, 0, . . . , 0],

set the matrix Ξk ∈ Mk to

[
0 2
0 0

]
if k = 2, or

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
√

2
· 1

· ·
· ·

· 1
·

√
2

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

if k > 2, (8)

and set A = diag(Ξk, 0) ∈ Mn. It was independently observed by Choi [6] and Crouzeix 
[11] that W (A) = W (Ξk) = D, so the numerator of the Crouzeix ratio for (c, A) is one, 
and that p(A) = Ak−1 = diag(Ξk−1

k , 0) is a matrix with just one nonzero, namely a 
2 in the (1, k) position, so the denominator of the Crouzeix ratio is 2 and hence the 
ratio is 0.5. Note that Ξk−1

k is unitarily similar (via row and column permutations) to 
a direct sum of a 2 × 2 Jordan block and a zero matrix of order k − 2. We call Ξk the 
Choi–Crouzeix matrix of order k.
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Since |p| is constant on bd W (A), the Crouzeix ratio f is nonsmooth at (c, A). In 
[16], together with A.S. Lewis, we showed that 0 ∈ ∂f(c, A), i.e., (c, A) is a nonsmooth 
stationary point of f . This result extends easily to the pair (c, A) where c is the coefficient 
vector for p(ζ) = (ζ − λ)k−1 and

A = λI + αUdiag(Ξk, B)U∗, (9)

for any nonzero α, λ ∈ C, unitary matrix U , and matrix B with W (B) ⊂ D. Of course, 
if Crouzeix’s conjecture is true, then these pairs are all global minimizers of f .

Note an interesting difference from the situation in the previous section: here f is 
nonsmooth at (c, A), although the boundary of the field of values of A is smooth.

6. The computational model

To accurately and efficiently approximate bd W (A), we use Chebfun [13], a system 
for approximating real- or complex-valued functions to machine precision accuracy by 
adaptive Chebshev approximation, generating interpolation points zθ automatically. In 
the case illustrated in Fig. 1, Chebfun automatically generates a “chebfun” consisting 
of five “pieces” representing connected sets of extreme points, which must be joined 
together by line segments to represent all boundary points. The circles plotted in Fig. 1
are in fact the Chebyshev interpolation points zθ computed by Chebfun.

We have applied two methods for nonsmooth optimization to search for minimizers of 
the Crouzeix ratio: the Gradient Sampling method [3], which has convergence guarantees 
described below, and the BFGS method, devised independently in 1970 by Broyden, 
Fletcher, Goldfarb and Shanno for unconstrained optimization of differentiable functions, 
but which is also extremely effective for nonsmooth optimization [23], although it does 
not have convergence guarantees in this domain.

Both the Gradient Sampling method and the BFGS method require computation of 
f(c, A) and its gradient ∇f(c, A) at a sequence of iterates (c(k), A(k)) generated by the 
method. The main cost in computing f(c, A) is that of constructing the chebfun repre-
senting bd W (A), including any line segments connecting the extreme points. Computing 
τ(c, A), the maximum of the modulus of q(c, z) on bd W (A), is then done by invoking 
two Matlab functions that have been overloaded to be applicable to chebfuns, namely
polyval and norm(.,inf), while computing β(c, A), the 2-norm of q(c, A), is carried 
out by calls to two standard Matlab functions, polyvalm and norm.

Once f(c, A) = τ(c, A)/β(c, A) has been computed, the additional computation re-
quired to obtain its gradient given by (7) is minimal, even though the formula is somewhat 
complicated. A natural question is: what is the method to do if f is not differentiable 
at (c, A)? The answer is that both the Gradient Sampling method and BFGS have the 
same computational philosophy on this point: there is no need to check whether f is 
differentiable at (c, A), as the algorithm will virtually never encounter points where f
is nonsmooth, except in the limit. In the case of Gradient Sampling this statement can 
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be formalized: convergence results in [21], which refine the original convergence results 
given by [3], are applicable to the Crouzeix ratio f , since it is locally Lipschitz, contin-
uously differentiable on an open full-measure subset of its domain, and bounded below 
by zero. Hence, with probability one, Gradient Sampling generates a sequence of points 
(c(k), A(k)) on which f is differentiable, and for which all cluster points (c̃, Ã) of the 
sequence are Clarke stationary, i.e., 0 ∈ ∂f(c̃, Ã). Thus, the Matlab codes that com-
pute the Crouzeix ratio can arbitrarily break any ties for the maximum value of |q(c, z)|
on bd W (A), ties for the maximum eigenvalue of Hθ, and ties for the maximum sin-
gular value of q(c, A), since it is highly unlikely that an exact tie will occur. Clearly, 
small changes in (c, A) may result in large changes in the computed ∇f(c, A), but this 
is inherent in nonsmooth optimization.

The Gradient Sampling and BFGS methods are both line-search descent methods, 
meaning that at every iteration they use an inexact line search to repeatedly evaluate the 
minimization objective f along a search direction in the variable space until a reduction 
in f is obtained.

Gradient Sampling is essentially a stabilized steepest descent method designed for non-
smooth optimization. BFGS is a quasi-Newton method originally designed for smooth 
optimization problems: the essential idea is that gradient difference information is ex-
ploited to update an approximation to the Hessian of the function. In the smooth case, 
under a regularity condition, eventually the line search takes only unit steps, with just 
one function evaluation sufficing to obtain a reduction in f , and the asymptotic conver-
gence rate is superlinear. In the nonsmooth case, where the gradient is discontinuous at 
nonsmooth points, the BFGS update results in a Hessian approximation indicating huge 
curvature in some directions – exactly what is needed, since a nonsmooth function can 
always be approximated by a highly ill-conditioned quadratic function. The unit-step and 
superlinear convergence properties do not hold in the nonsmooth case, but usually not 
many steps are needed in the line search and the convergence rate is linear. In practice, 
when BFGS terminates near a point where the function is not differentiable, typically 
the approximate “Hessian” has condition number of the order of 1016, the inverse of the 
machine precision, and the algorithm terminates because it cannot obtain descent in the 
line search due to the limitations of rounding error.

In the next three sections we report results of our experiments that search for a 
minimizer of the Crouzeix ratio f(c, A) using nonsmooth optimization, along with some 
theorems and additional conjectures that were inspired by the results. We first treat 
the case where we vary c and A together; then we describe cases where we fix c and 
vary A, and finally cases where we fix A and vary c. Since optimizing over complex 
(c, A) gave similar results to optimizing over real (c, A), but required substantially more 
time to run, we report only the results for real (c, A), and without loss of generality we 
optimized over upper Hessenberg matrices A, with all but one subdiagonal set to zero, 
since any real matrix is orthogonally similar to a Hessenberg matrix and f is invariant 
under orthogonal similarity transformations. Since W (A) is symmetric w.r.t. the real 
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Fig. 2. Results for minimizing f over c and A for n = 3, . . . , 8. Each panel shows the final values of f
obtained in 100 runs of BFGS from normally distributed starting points, sorted into ascending order.

axis when A is real, we computed bd W (A) only in the upper half plane.6 Also, since the 
runs using Gradient Sampling and BFGS gave similar results, but the former required 
much more computation, we report only the results using BFGS. In each BFGS run, 
we imposed a maximum of 1000 iterations, stopping earlier if demanding stationarity 
criteria were met (see [23] for details), or if the method was unable to reduce f in the 
line search (usually indicating that the current iterate is nearly locally optimal).

The Matlab codes that we used to generate the results in this paper are available 
on request to the authors.

7. Varying the polynomial and the matrix

Since Crouzeix’s conjecture is known to hold for n = 2, we consider n = 3, . . . , 8 and, 
for each n, we set m, the maximum degree of p, to n − 1, so that the vector of the 
corresponding coefficients c0, . . . , cn−1 has length n. Since an n × n Hessenberg matrix 
has (n2 + 3n − 2)/2 nonzeros, this amounts to a total of (n2 + 5n − 2)/2 optimization 
variables. For each n, we made 100 runs of BFGS starting from normally distributed 
randomly generated starting points. Fig. 2 shows, for each n, the final values of f for 
each of the 100 starting points, sorted into ascending order. We see that values close 

6 The top half of the boundary is represented by a chebfun parametrized by θ ∈ [π, 2π]. In the example of 
Fig. 1, this chebfun would have 3 smooth pieces, with two line segments connecting them together as well 
as a third line segment connecting 5 + i to the real axis.
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Table 1
Results for minimizing f over c and A for n = 3, . . . , 8. The second column shows the lowest final value 
of f over 100 runs of BFGS from normally distributed starting points and the third column shows the 
eccentricity of the corresponding computed W (A). The next three columns show |κ − λ1|, |κ − μ1| and 
|κ − μ2| where κ is the center of W (A), λ1 is the smallest root (in magnitude) of p and μ1, μ2 are the two 
eigenvalues of A that are closest to κ, with p and A respectively the polynomial corresponding to the final 
coefficient vector c and the final matrix. The meaning of the final two columns is explained in the text.

n f ecc(W (A)) |κ − λ1| |κ − μ1| |κ − μ2| ‖d‖ ‖E‖

3 0.500000000000000 2.1e−08 1.2e−11 2.2e−07 2.2e−07 3.3e−12 3.1e−05
4 0.500000000000000 1.9e−04 1.2e−08 1.7e−04 1.7e−04 3.3e−08 1.9e−06
5 0.500000000000014 3.2e−04 2.6e−08 5.0e−04 5.0e−04 1.7e−08 1.3e−04
6 0.500000017156953 8.4e−02 3.5e−01 1.7e−01 3.2e−01 4.4e+00 NaN

7 0.500000746246673 1.2e−01 1.6e−01 4.4e−01 1.0e+00 5.7e+00 NaN

8 0.500000206563813 1.3e−01 5.1e−01 7.2e−01 7.5e−01 8.8e+00 NaN

to 0.5 are found repeatedly, for all n = 3, . . . , 8, and no lower values were found. (We 
will discuss the values near 1 below.) The fact that the minimal value found is so often 
close to 0.5 is strong evidence that 0.5 is at least a locally minimal value for f ; it also 
indicates substantial support for the conjecture that this is the globally minimal value. 
Examining the second column of Table 1, we see that, for each n, the lowest value of 
f found approximates 0.5 quite accurately, ranging from 15 decimal digits of agreement 
for n = 3 (about the best that is possible using IEEE double precision in Matlab) to 6 
digits for n = 8.

Fig. 3 shows, for each n, the boundary of the field of values of A, the eigenvalues 
of A, and the roots of p, where A and p are respectively the final computed matrix 
and polynomial (with coefficients given by c) associated with the lowest final Crouzeix 
ratio f . In all cases, W (A) is close to a disk, as further verified by the eccentricities7
reported in the third column of Table 1, but there are some subtle distinctions between 
the results for the various values of n.

In the panels for n = 3, 4 and 5, for which the final value of f approximates 0.5 
to between 13 and 15 digits, we see that exactly one root of p, denoted λ1, and two
eigenvalues of A, denoted μ1 and μ2, are very nearly coincident with κ, the center8 of 
W (A); their distances from κ are displayed in Table 1. Define the coefficient vectors

c̃ = 1
c1

c and d = 1
c1

[0, 0, c2, . . . , cn−1], so that c̃− d =
[
c0
c1

, 1, 0, . . . , 0
]
.

The penultimate column of Table 1 displays the norm of d, which measures how close 
c̃ is to being a linear polynomial. When ‖d‖ is small, as it is for n = 3, 4 and 5, all 
the roots of p except λ1 ≈ −c0/c1 are enormous (they diverge to ∞ as the coefficients 

7 Defined as (1 − b2/a2)1/2, where a and b are respectively the maximum and minimum of the real and 
imaginary diameters of W (A), giving zero if W (A) is a disk.
8 Computed as the real part of the integral of the chebfun representing bd W (A) in the upper half-plane, 

divided by π.
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Fig. 3. Results for minimizing f over c and A for n = 3, . . . , 8. The panel for each n shows the boundary of 
W (A) (solid curve), the eigenvalues of A (asterisks) and the roots of p (small circles), where p and A are 
respectively the final polynomial and matrix corresponding to the lowest final value of f , all plotted in the 
complex plane. Roots of p lying outside W (A) are not shown.

c2, . . . , cn−1 converge to zero). Furthermore, we find using the Generalized Null Space 
Decomposition (GNSD)9 that

A− λI = αUdiag(Ξ, B)UT + E, (10)

where λ = λ1, 0.5 < α < 4, U is orthogonal, Ξ = Ξ2 (the 2 × 2 Choi–Crouzeix matrix 
given in (8)), W (B) ⊂ D and ‖E‖ is given in the last column of Table 1. Since, for n = 3, 
4 and 5, ‖d‖ and ‖E‖ are both small, the pair (c̃, A) is close to a pair (c̃−d, A −E) which 
is precisely a nonsmooth stationary point of the kind discussed in Section 5, with k = 2.

Although most of the final pairs (c, A) for which f agrees with 0.5 to about 15 digits 
have the configuration just described, some have roots λ1, . . . , λk−1 of p and eigenvalues 
μ1, . . . , μk of A nearly coincident for k > 2, with coefficients ck, . . . , cn−1 close to zero 
and with (10) holding as above, except that λ = (

∑k−1
j=1 λj)/(k − 1), Ξ is the k × k

Choi–Crouzeix matrix given in (8) with k > 2, and ‖Bk−1‖ < 2. These pairs (c, A) are 
also close to being nonsmooth stationary points of the kind discussed in Section 5.

9 See [17] for the history of the GNSD, more often known as the staircase form, which goes back to [22]. 
We used the Matlab code available in the supplementary online materials published with [17]. This requires 
an input tolerance, but the results given here are identical for tolerances in the range 10−6 to 10−1.
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The results for n = 6, 7, and 8 are quite different. The final polynomial p does not 
have any small coefficients, and hence does not have any huge roots. Instead, all roots 
of p as well as all eigenvalues of A are approximately near κ, the center of W (A), but 
none of them is nearly coincident with κ or with any of the other roots or eigenvalues. 
Furthermore, as can be seen from the eccentricities, W (A) is not as close to being a 
disk as it is in the cases n = 3, 4 and 5. We have observed repeatedly that this kind 
of configuration, with the roots of p and the eigenvalues of A all clustered fairly near, 
but not very near, the center of an approximate disk W (A), is typical for approximate 
minimizers of the Crouzeix ratio with values fairly, but not very, close to 0.5.

Another striking observation from Fig. 2 is that the final value of f equals 1 for a 
significant number of starting points, ranging from just 1% for n = 3 to 70% for n = 8. 
The corresponding final computed (c, A) all have the property that10

A = Udiag(λ,B)UT + E

where (c, diag(λ, B)) has a dominant outside scalar block λ (see Definition 1), U is or-
thogonal and ‖E‖ is small, typically of the order of 10−8. Hence, according to Theorem 2, 
the pairs (c, A − E) are smooth stationary points of f . Further numerical investigation 
indicates that they are local minimizers, as is also indicated by the fact that we re-
peatedly find these stationary values. Fig. 4 shows, for n = 3, . . . , 8, the fields of values 
for which f is closest to 1 — in fact, agreeing with the value 1 to 15 digits. Note the 
“ice cream cone” shapes of these fields of values, with the dominant scalar block λ at 
the vertex. As n is increased, it becomes increasing difficult for BFGS from randomly 
generated starting points to find any values of f below 1.

There are a few final computed values of f displayed in Fig. 2 that are not close to 0.5 
or 1, so we restarted BFGS at the corresponding final pairs (c, A) and at nearby points 
using various perturbation levels. For n = 3 and 4, we quickly found values of f that 
were close to 0.5. For n = 5 and 6, there were no final values that were not close to 0.5 
or 1, so no restarts were needed. However, for n = 7 and 8, restarting BFGS at and near 
the final computed pairs did not lead to much improvement, suggesting the possibility 
that there are other stationary values of f between 0.5 and 1.

8. Fixing the polynomial, varying the matrix

Additional insight is gained by fixing p ∈ Pm, allowing A to vary over n ×n matrices. 
The case p(ζ) = ζm is addressed first. In this case, as mentioned in Section 1, we know 
that Crouzeix’s conjecture holds, so finding values of f lower than 0.5 is impossible. The 
interest in these experiments is in discovering for what A we find f equal to or close 
to 0.5. The results are completely different for the cases n > m and n ≤ m.

10 Computed from the Schur decomposition of A, permuting the eigenvalues if necessary to ensure that 
the dominant one appears in the 1,1 position. This can be done in Matlab using the ordschur function.
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Fig. 4. “Ice Cream Cone” stationary points of the Crouzeix ratio f , discovered while minimizing f for 
n = 3, . . . , 8. The panel for each n shows the boundary of W (A) (solid curve), the eigenvalues of A
(asterisks) and the roots of p (small circles), where p and A are respectively the final polynomial and 
matrix corresponding to the final value of f that is closest to one, all plotted in the complex plane.

8.1. When p(ζ) = ζm and n > m

As in the previous section, we optimized the Crouzeix ratio f over n× n real upper 
Hessenberg matrices, with n ranging from 3 to 8, but this time with p fixed to the 
monomial p(ζ) = ζm, with m = n − 1, so c = [0, . . . , 0, 1]. Fig. 5 displays the final 
values of f , again starting BFGS from 100 randomly generated starting points, sorted 
into ascending order. As before, many values close to 0.5 or equal to 1 were found, 
but other apparently locally minimal values between 0.5 and 1 were also discovered, for 
n = 4, . . . , 8. Fig. 6 shows, for each n, the boundary of W (A) where A is the final matrix 
associated with the lowest value of f , along with the eigenvalues of A and the single root 
0 of p. The fields of values of the final matrices are somewhat closer to being disks than 
previously, as the eccentricities shown in Table 2 are now smaller. The table also shows 
the smallest and largest eigenvalues of A in modulus. The most important difference 
from the results of the previous section is that for n = 3, 4, 5 and 6, all n eigenvalues 
of A are close to zero, and (10) now holds with λ = 0, ‖E‖ small and Ξ = Ξn, the n × n

Choi–Crouzeix matrix given in (8).
Based on these results and others, we conjecture that, when p(ζ) = ζn−1, with cor-

responding coefficient vector c, the only n × n matrices A for which f(c, A) = 0.5 are 
those of the form αUΞnU

∗, where α �= 0 and U is unitary, and for p(ζ) = ζm and A of 
order n > m, a matrix of the form αUdiag(Ξm+1, B)U∗, where α �= 0, U is unitary and 
W (B) ⊆ D.
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Fig. 5. Results for minimizing f over A for n = 3, . . . , 8, with p fixed to the monomial ζn−1. Each panel 
shows the final values of f obtained in 100 runs of BFGS from normally distributed starting points, sorted 
into ascending order.

Table 2
Results for minimizing f over A for n = 3, . . . , 8, with p fixed to the monomial ζn−1. The second column 
shows the lowest final value of f over 100 runs of BFGS from normally distributed starting points and the 
third column shows the eccentricity of the corresponding computed W (A). The remaining columns show 
|κ|, |μ1| and |μn| where κ is the center of W (A), and μ1 and μn are respectively the smallest and largest 
eigenvalues of A in modulus, where A is the matrix associated with the lowest value of f .

n f ecc(W (A)) |κ| |μ1| |μn| ‖E‖

3 0.500000000000000 0.0e+00 1.5e−16 1.3e−05 1.3e−05 1.9e−08
4 0.500000000000000 1.5e−08 3.4e−16 6.8e−04 6.8e−04 1.5e−07
5 0.500000000000002 2.1e−08 3.1e−16 1.3e−03 3.9e−03 1.8e−07
6 0.500000000000129 1.9e−07 8.8e−16 1.9e−03 7.4e−02 2.6e−06
7 0.500002622037000 9.2e−04 1.6e−06 7.0e−01 1.7e+00 NaN

8 0.500040868776241 2.7e−03 8.7e−06 1.2e+00 2.9e+00 NaN

8.2. When p(ζ) = ζm and n ≤ m

When we fix p to the monomial ζm but insist that the matrix A have order n ≤ m, 
we are no longer able to find values of the Crouzeix ratio f that are close to 0.5, as 
illustrated in Fig. 7 in the case n = m. We conjecture that when p(ζ) = ζm there is no 
sequence of matrices of order n ≤ m for which the Crouzeix ratio converges to 0.5. Note 
that Ξn

n = 0, so for A close to Ξn the Crouzeix ratio is large.
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Fig. 6. Results for minimizing f over A for n = 3, . . . , 8, with p fixed to the monomial ζn−1. The panel for 
each n shows the boundary of W (A) (solid curve), the eigenvalues of A (asterisks) and the origin (small 
circle), where A is the matrix corresponding to the lowest final value of f .

8.3. When p is arbitrary and n > m

When we fix p to be any polynomial of degree m except a monomial, and we optimize 
over (m + 1) × (m + 1) matrices, we are able to generate values of the Crouzeix ratio 
that approximate 0.5, but the closer we approximate it, the larger W (A) becomes, so 
that the limit 0.5 is not actually attained. This observation led us to the following 
theorem.

Theorem 3. For any fixed polynomial p of degree m ≥ 1, with corresponding coeffi-
cient vector c, there exists a divergent sequence {A(k)} of order n = m + 1 for which 
f(c, A(k)) converges to 0.5. Furthermore, we can choose the sequence so that {W (A(k))}
are disks.

Proof. Let A(k) = kΞm+1, where Ξm+1 is the Choi–Crouzeix matrix given in (8). Then 
W (A(k)) is a disk centered at 0 with radius k. Write p(ζ) = cmζm + · · · + c0. Then the 
(1, n) entry of p(A(k)) is 2cmkm, so 2|cm|km dominates ‖p(A(k))‖ as k → ∞. Furthermore, 
‖p‖W (A(k)) is increasingly well approximated by |cm|km as k → ∞. So, f(c, A(k)) → 0.5
as k → ∞. �
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Fig. 7. Results for minimizing f over A for n = 3, . . . , 8, with p fixed to the monomial ζn. Each panel shows 
the final values of f obtained in 100 runs of BFGS from normally distributed starting points, sorted into 
ascending order.

Note also that if p(ζ) = ζm, then f(c, A(k)) = 0.5 for all k, so there is no need for 
W (A) to blow up in this case and we can replace the sequence {A(k)} by the constant 
matrix Ξm+1.

We conjecture that when p is fixed to be any polynomial of fixed degree m except
a monomial, with corresponding coefficient vector c, it is not possible to find A with 
order m + 1, or indeed any larger order, for which f(c, A) = 0.5. However, 0.5 can be 
approximated to arbitrary accuracy by blowing up W (A) sufficiently, and attained when 
p is a monomial, as explained above.

8.4. When p is arbitrary and n ≤ m

When we fix p with degree m with at least two distinct roots and optimize over A
with size n = m, we find very different behavior. We frequently generate a sequence of 
matrices for which W (A) shrinks to a single point, namely, one of the roots of p, with f
converging to 0.5, but as in the previous subsection, the limit 0.5 is not actually attained. 
This observation led us to the following theorem.

Theorem 4. Fix p to have degree m with at least two distinct roots and with corresponding 
coefficient vector c. Then, for all integers n with 2 ≤ n ≤ m, there exists a convergent 
sequence of n ×n matrices {A(k)} for which the Crouzeix ratio f(c, A(k)) converges to 0.5. 
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Furthermore, we can choose A(k) so {W (A(k))} is a sequence of disks shrinking to a root 
of p.

Proof. Without loss of generality we can assume that one of the roots of p is zero, so

p(ζ) = ζ�
m−�∏
i=1

(λi − ζ)

where 
 is the multiplicity of the zero root, and the other roots λi, i = 1, . . . , m − 
, are 
nonzero, though not necessarily distinct from each other. Let A(k) be zero except that 
its leading (
 + 1) × (
 + 1) submatrix is Ξ�+1/k. Then

p(A(k)) = (A(k))�
m−�∏
i=1

(λiI −A(k))

is a matrix that is all zero except that its (1, 
 + 1) entry is 2(1/k)�
∏m−�

i=1 λi, so 
‖p(A(k))‖ = 2(1/k)�

∏m−�
i=1 |λi|. Furthermore, W (A(k)) is a disk around 0 of radius 1/k, 

so for large k the maximum of |p(ζ)| on this disk is increasingly well approximated by 
(1/k)�

∏m−�
i=1 |λi|. Hence, f(c, A(k)) → 0.5 as k → ∞. �

Note that the quantity 0.5 is not attained as in the limit one instead obtains 0/0.
We conjecture that when p is fixed to be any polynomial of fixed degree m, with 

corresponding coefficient vector c, it is not possible to find A with order m, or less, for 
which f(c, A) = 0.5. However, as long as p has at least two distinct roots, 0.5 can be 
approximated to any accuracy by shrinking W (A) sufficiently close to one of the roots, 
as explained above.

9. Fixing the matrix, varying the polynomial

If we fix A, then in general the Crouzeix ratio 0.5 cannot be attained or approximated 
to arbitrary accuracy by some p of fixed maximal degree. Obviously this is true if A is 
normal, but we conjecture that it is true for all A unless it is essentially a Choi–Crouzeix 
matrix, that is a matrix of the form (9).11

Suppose we remove the limitation on the maximum degree of p. It is known that 
for any fixed A, any analytic function g that minimizes ‖g‖W (A)/‖g(A)‖ has constant 
magnitude on bd W (A) [8], and it is possible to compute this numerically using conformal 
mapping techniques and Blaschke products. This work is beyond the scope of the paper, 
so we leave discussion of this to future work.

11 Extended to allow W (B) ⊆ D: this possibility is not included in (9) as the variational analysis result 
does not extend to this case.
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10. Summary

In this paper, we investigated Crouzeix’s conjecture by optimizing the Crouzeix ratio 
f defined in (5), whose minimum value over all polynomials p and matrices A is 0.5 if 
the conjecture is true. We used Chebfun to approximate the boundary of the field of 
values W (A) to high accuracy and BFGS to search for minimizers of f over the variable 
space (c, A), where c is the coefficient vector for the polynomial p. It is remarkable 
how reliably Chebfun and BFGS performed despite the nonsmoothness that can occur 
either in the boundary of W (A) (w.r.t. the complex plane) or in the Crouzeix ratio f
(w.r.t. the variable space). The results for the 600 runs of BFGS reported in Fig. 2
alone required about 500,000 chebfun constructions, each one to represent the field of 
values of a different matrix, including all the evaluations of f(c, A) carried out in the 
line searches. Almost all these runs delivered pairs (c, A) that are either (i) close to a 
nonsmooth stationary point of f with stationary value 0.5 (for which p is a monomial 
with degree m and A is essentially12 a Choi–Crouzeix matrix of order m +1, with W (A)
being a disk) or (ii) close to a smooth stationary point of f with stationary value 1 (for 
which (c, A) has a dominant outside scalar block, with W (A) having an “ice-cream-cone” 
shape).

We also searched for minimizers of the Crouzeix ratio when the polynomial is fixed. 
The resulting observations led to Theorems 3 and 4, which show that given any fixed 
polynomial with at least two distinct roots, there is a sequence of matrices of any given 
order on which the Crouzeix ratio converges to 0.5.

Overall, our results strongly support Crouzeix’s conjecture: the globally minimal value 
of f is 0.5.
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