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Convergence Proof
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The basic convergence result given in §3.2 can be found in several ref-
erences, such as [81, 63]. Many of these give more sophisticated results,
with more general penalties or inexact minimization, For completeness,
we give a proof here. ‘;‘

We will show that if f a,nfi g are closed, proper, and convex, and
the Lagrangian Ly has a s {dle point, then we have primal residual
convergence, meaning thet 1""?—) 0, and objective convergence, meaning
that p* — p*, where{ p* :?T')+ g(zm\?\’e will also see that the dual
residuat s = pAT B(z* — 2F-1) converges to zero.

Let (z*,2*,4*) be a saddle point for Ly, and define
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We will see that V¥ is a Lyapunov function for the algorithm, i.e., a

nonnegative quantity that decreases in each iteration. (Note that V* is
unknown while the algorithm runs, since it depends on the unknown
values z* and y*.)

We first ontline the main idea. The proof relies on three key inequal-
ities, which we will prove below using basic results from convex analysis
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This states that V* decreases in each iteration by an amount that

along with simple algebla The ﬁmt mequahtygsﬂ_,..f--—..-..-»?

depends on the norm of the residual and on the change in z over one
iteration. Because V¥ < VO, it follows that y* and Bz* are bounded.
Iterating the inequality above gives that
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i\ o (I + B - 24yg) < V0
k=0

which implies that r* — 0 and B(z BIL z’”) — 0 as k — co. Multi-
plying the second expression by pAT shows that the dual residual
Wmelm (This shows that the stop-
ping criterion (3. 1?) which requires the primal and dual residuals o

be small, will eve tqally hold.)
The second key mequahty is

P —p* /
< ()T — (B - )T 4 B - 2), L
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and the third inequ&litz 18 %-_WME

p* pk+1 < y*T k+1

(A.3)
The righthand side in (A 2) goes t0 zero as k — oo, because B(2F1
z*) is bounded and both r*+1 and B(z*! — 2*) go to zero, The right-
’E{ﬁa side in (A.3) poes to zero as k — o0, since ¥ goes to zero. Thus
we have limy_,o, p¥ = p*, i.e., objective convergence.
Before giving the proofs of the three key inequalities, we derive the

inequality (3.11) mentioned in our discussion of stopping criterion from

the inequality (A.2). We simply observe that —r*+1 + B(zk+! ﬁéji}\:;/

— Az~ ), substituting this into (A.2) yields (3.11),

@* < - (y.’\-f—l)T k+l + (CDA’JFI *}T 'H'l.

-Proof of inequality {A.3)

Since («*,z*,¢*) is a saddle point for Lg, we have
Yy
[0(1.*, ) < [0( .‘u+1 ~+1’y*)'
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Using Az* + Bz* = ¢, the lefthand side is p*. With p**t1 = f{zbt1) +
g(2*t1), this can be written as
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which gives (A.3). >

Proof of inequality (A.2) g“ = ’&"(ﬂ) “&“3 j ){//’1)( 3 E

By definition, ! minimizes Lp(a:,zk,y’“): Since f is closed, proper, @ A ) E "‘; (w‘”h
and convex it is subdifferentiable, and so is L,. The (necessary and ig X+ bZ

sufficient) optimality condition is

0 € AL, (M, 2%, g%y = af(ah ) + ATyF + pAT(Az*H! 4 B2* — o). x /

(Here we use the basic fact that the subdifferential of the sum of a
subdifferentiable function and a differentiable function with domain
R" is the sum of the subdifferential and the gradient; see, e.g., [140,

231
§ 3}32’0@9 y* = y* o+ ¥l we can plug in y¥ = y*tt — prtt and
rearrangd to obtain ”i“‘::_ - ,r__q,:_Wmm"
e
This implies that zF Mues 7
f(r) (YT — pB(FH - M) T Ax, /
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A similar algument shows that zi" +1 mininiizes g(z) + y{"ﬂ)TBz It
follows that o

3
i\ f(:l:k+l) + (yk4-1 - pB(Zk+1 -; zk))TA:ckJrl /
\ < Jla) + @ = B )T A
3 and that V/’f ;;
g(zk+1) + y(k+1)TBzfc+l < g(z*) + y(k-l_l)TBz*. /

Adding the two inequalitied above,using Az* + Bz* = ¢, and rearrang-
ing, we obtain {A.2). 1 j
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Proof of inequality (A.1)

Adding (A.2) and (A.3), regrouping terms, and multiplying through by

2 gives
2y — g )T 2p(B(M — 24T (Ad)
+ 2p(B(AH — )T (B — 24) <. '

The result (A.1) will follow from this inequality after some manipula-
tion and rewriting,.

We begin by rewriting the first term. Substituting y =gk +
k-1

or gives
oyt =y Tl 4l U,
and substituting 751 = (1/p) (' — *) in the first two terms gives
@/p) " — ) W = o) + /ol - IR+ alir R
Since yFt!t — yb = (yFt — %) — (¢* — y*), this can be written as
(1/6) (IFH = 971 = g = v 1) + oI 05 (A5)
We now rewrite the remaining terms, ¢.¢e.,
ol — 2p(B(H — ) e 2p(BUHH — YT (B 27),
where pllr*+1(2 is taken from (A.5). Substituting
B C A ) IO Py
in the lagt term gives
Pl — B — )3+ pl B - )3
+2p(B(M — AFNT(B(* - 24)),
and substituting
P L R (kaH — 2y = k _ 2%

in the last two terms, we get

plrhH — B - 2R)2 + p(ﬂB(z’“*l — )i - | B(z* — z*)“%) .
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With the previcus step, this implies that {A.4) can be written as
Vk . Vk+1 > p“?‘k+1 - B(zk-H _ zk)ﬁ% (Aﬁ)

To show (A.1), it now suffices to show that the middle term
—2prBHOT(B(ZFHL — 58Y) of the expanded right hand side of (A.6)
is positive. To see this, recall that zF+t! minimizes g(z) + y T By
and z* minimizes g{z) + y*7 Bz, so we can add

g(zk""l) + y{k+1)Tsz+1 < g(zk) + y{k+1)Tsz
and
o) + yFTBS < () + 4 T B!
to get that
(yFH — yk)T(B(zkﬂ ~ ) <o

Substituting y* 1 — y* = prf+! gives the result, since p > 0.




